Exercise Reduces Lung Fibrosis Involving Serotonin/Akt Signaling

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
PEREIRA, Paulo Rogerio
OLIVEIRA-JUNIOR, Manoel Carneiro
MACKENZIE, Breanne
CHIOVATTO, Jaime Eduardo Davino
MATOS, Yves
GREIFFO, Flavia Regina
RIGONATO-OLIVEIRA, Nicole Cristine
DELLE, Humberto
IDZKO, Marco
Citação
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, v.48, n.7, p.1276-1284, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia, which involves aberrant serotonin (5-hydroxytryptamine [5-HT]) and Akt signaling. As protective effects of chronic aerobic training (AT) have been demonstrated in the context of lung injury, this study investigated whether AT attenuates bleomycin-induced lung fibrosis partly via a reduction of 5-HT and AKT signaling. Methods: Seventy-two C57BL/6 male mice were distributed in Control (Co), Exercise (Ex), Fibrosis (Fi), and Fibrosis + Exercise (Fi + Ex) groups. Bleomycin (1.5 UI.kg(-1)) was administered on day 1 and treadmill AT began on day 15 and continued for 60 min.d(-1), 5 d.wk(-1) for 4 wk. We evaluated total and differential cell counts in bronchoalveolar lavage (BAL), interleukin (IL)-1A, IL-6, CXCL1/KC, IL-10, tumor necrosis factor alpha, and transforming growth factor A levels in BAL, collagen content in lung parenchyma, 5-HT levels in BAL fluid and in serum, the expression of 5-HT2B receptor, and Akt phosphorylation in lung tissue. Results: AT reduced bleomycin-increased number of total cells (P < 0.001), neutrophils (P < 0.01), macrophages (P < 0.01), and lymphocytes (P < 0.05) in BAL. It also reduced the levels of IL-1A (P < 0.01), IL-6 (P < 0.05), CXCL1/KC (P < 0.001), tumor necrosis factor > (P < 0.001), and transforming growth factor A (P < 0.001). It increased expression of ant-inflammatory cytokine IL-10 (P < 0.001). It reduced bleomycin-increased 5-HT levels in BAL (P < 0.001) and in serum (P < 0.05). Reductions in collagen fiber deposition (P < 0.01), 5-HT2B receptor expression (P < 0.01), and Akt phosphorylation in lung tissue were observed. Conclusions: AT accelerates the resolution of lung inflammation and fibrosis in a model of bleomycin-induced lung fibrosis partly via attenuation of 5-HT/Akt signaling.
Palavras-chave
AEROBIC TRAINING, FIBROSIS, EXERCISE, INFLAMMATION, 5-HT
Referências
  1. Ahn MH, 2011, RESP RES, V12, DOI 10.1186/1465-9921-12-73
  2. Aumiller V, 2013, AM J RESP CELL MOL, V49, P96, DOI 10.1165/rcmb.2012-0524OC
  3. Barlo NP, 2011, CLIN EXP IMMUNOL, V166, P346, DOI 10.1111/j.1365-2249.2011.04468.x
  4. Bringardner BD, 2008, ANTIOXID REDOX SIGN, V10, P287, DOI 10.1089/ars.2007.1897
  5. Durk T, 2013, AM J RESP CRIT CARE, V187, P476, DOI 10.1164/rccm.201208-1440OC
  6. Fabre A, 2008, EUR RESPIR J, V32, P426, DOI 10.1183/09031936.00126907
  7. Fernandez IE, 2012, LANCET, V380, P680, DOI 10.1016/S0140-6736(12)61144-1
  8. Konigshoff M, 2010, THORAX, V65, P949, DOI 10.1136/thx.2009.134353
  9. Kulasekaran P, 2009, AM J RESP CELL MOL, V41, P484, DOI 10.1165/rcmb.2008-0447OC
  10. Le TTT, 2014, J IMMUNOL, V193, P3755, DOI 10.4049/jimmunol.1302470
  11. Lubin M, 2014, CHEST, V145, P1333, DOI 10.1378/chest.13-1984
  12. Melancon MO, 2014, APPL PHYSIOL NUTR ME, V39, P1250, DOI 10.1139/apnm-2014-0092
  13. Mercer PF, 2009, AM J RESP CRIT CARE, V179, P414, DOI 10.1164/rccm.200712-1827OC
  14. Millar AB, 2006, THORAX, V61, P835, DOI 10.1136/thx.2006.060772
  15. Monti JM, 2014, REV NEUROSCIENCE, V25, P429, DOI 10.1515/revneuro-2014-0016
  16. Moore BB, 2014, FRONT MED, V1, P1
  17. Mouratis MA, 2011, CURR OPIN PULM MED, V17, P355, DOI 10.1097/MCP.0b013e328349ac2b
  18. Nakagome K, 2006, THORAX, V61, P886, DOI 10.1136/thx.2005.056317
  19. Nho RS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094616
  20. Ohmatsu S, 2014, BEHAV BRAIN RES, V270, P112, DOI 10.1016/j.bbr.2014.04.017
  21. Palumbo-Zerr Katrin, 2015, Nat Med, V21, P150, DOI 10.1038/nm.3777
  22. Pardo Annie, 2012, Fibrogenesis Tissue Repair, V5, pS9, DOI 10.1186/1755-1536-5-S1-S9
  23. Pastva A, 2004, J IMMUNOL, V172, P4520
  24. Patki G, 2014, PHYSIOL BEHAV, V130, P47, DOI 10.1016/j.physbeh.2014.03.016
  25. Penumatsa K, 2014, CELL SIGNAL, V26, P2818, DOI 10.1016/j.cellsig.2014.09.002
  26. Pomytkin IA, 2015, BEHAV BRAIN RES, V276, P111, DOI 10.1016/j.bbr.2014.04.049
  27. Postal M, 2015, AUTOIMMUN REV, V14, P30, DOI 10.1016/j.autrev.2014.09.001
  28. Prata LO, 2012, EXP BIOL MED, V237, P873, DOI 10.1258/ebm.2012.011334
  29. Ramos DS, 2010, MED SCI SPORT EXER, V42, P113, DOI 10.1249/MSS.0b013e3181ad1c72
  30. Goncalves CTR, 2012, CRIT CARE, V16, DOI 10.1186/cc11807
  31. Russo RC, 2011, J LEUKOCYTE BIOL, V89, P269, DOI 10.1189/jlb.0610346
  32. Saketkoo LA, 2013, THORAX, V69, P436
  33. Saunders C, 2014, NEUROCHEM INT, V73, P113, DOI 10.1016/j.neuint.2013.09.015
  34. Sundar IK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087999
  35. Toledo AC, 2012, EUR RESPIR J, V39, P254, DOI 10.1183/09031936.00003411
  36. Valim V, 2013, REV BRAS REUMATOL, V53, P538, DOI [10.1016/j.rbr.2013.02.001, 10.1016/j.rbre.2013.02.001]
  37. Vieira RP, 2014, INT J SPORTS MED, V35, P629, DOI 10.1055/s-0033-1358477
  38. Vieira RD, 2012, MED SCI SPORT EXER, V44, P1227, DOI 10.1249/MSS.0b013e31824b2877
  39. Vieira RP, 2007, AM J RESP CRIT CARE, V176, P871, DOI 10.1164/rccm.200610-1567OC
  40. Vieira RP, 2008, AM J PHYSIOL-LUNG C, V295, pL670, DOI 10.1152/ajplung.00465.2007
  41. Vieira RP, 2011, RESP PHYSIOL NEUROBI, V175, P383, DOI 10.1016/j.resp.2011.01.002
  42. Vittal R, 2013, AM J RESP CELL MOL, V49, P47, DOI 10.1165/rcmb.2012-0389OC
  43. Watts SW, 2014, VASC PHARMACOL, V63, P1, DOI 10.1016/j.vph.2014.08.003
  44. Wen L, 2014, PHYSIOL BEHAV, V132, P57, DOI 10.1016/j.physbeh.2014.04.050
  45. Yan Z, 2014, AUTOIMMUN REV, V13, P1020, DOI 10.1016/j.autrev.2014.08.028