Mechanisms of Exercise Limitation and Prevalence of Pulmonary Hypertension in Pulmonary Langerhans Cell Histiocytosis

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Citação
CHEST, v.158, n.6, p.2440-2448, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND: Pulmonary Langerhans cell histiocytosis (PLCH) determines reduced exercise capacity. The speculated mechanisms of exercise impairment in PLCH are ventilatory and cardiocirculatory limitations, including pulmonary hypertension (PH). RESEARCH QUESTION: What are the mechanisms of exercise limitation, the exercise capacity , and the prevalence of dynamic hyperinflation (DH) and PH in PLCH? STUDY DESIGN AND METHODS: In a cross-sectional study, patients with PLCH underwent an incremental treadmill cardiopulmonary exercise test with an evaluation of DH, pulmonary function tests, and transthoracic echocardiography. Those patients with lung diffusing capacity for carbon monoxide (D-LCO) < 40% predicted and/or transthoracic echocardiogram with tricuspid regurgitation velocity > 2.5 m/s and/or with indirect PH signs underwent right heart catheterization. RESULTS: Thirty-five patients were included (68% women; mean age, 47 +/- 11 years). Ventilatory and cardiocirculatory limitations, impairment suggestive of PH, and impaired gas exchange occurred in 88%, 67%, 29%, and 88% of patients, respectively. The limitation was multifactorial in 71%, exercise capacity was reduced in 71%, and DH occurred in 68% of patients. FEV1 and D-LCO were 64 +/- 22% predicted and 56 +/- 21% predicted. Reduction in D-LCO, an obstructive pattern, and air trapping occurred in 80%, 77%, and 37% of patients. FEV1 and D-LCO were good predictors of exercise capacity. The prevalence of PH was 41%, predominantly with a precapillary pattern, and mean pulmonary artery pressure correlated best with FEV1 and tricuspid regurgitation velocity. INTERPRETATION: PH is frequent and exercise impairment is common and multifactorial in PLCH. The most prevalent mechanisms are ventilatory, cardiocirculatory, and suggestive of PH limitations.
Palavras-chave
exercise, Langerhans cell histiocytosis, lung function testing, pulmonary hypertension
Referências
  1. Alves JL, 2017, SEMIN RESP CRIT CARE, V38, P561, DOI 10.1055/s-0037-1606577
  2. Arena R, 2010, J HEART LUNG TRANSPL, V29, P159, DOI 10.1016/j.healun.2009.09.003
  3. ATS, 2003, AM J RESP CRIT CARE, V167, P211, DOI 10.1164/rccm.167.2.211
  4. Baldi BG, 2012, AM J RESP CRIT CARE, V186, P341, DOI 10.1164/rccm.201203-0372OC
  5. Bois MC, 2018, ARCH PATHOL LAB MED, V142, P929, DOI 10.5858/arpa.2017-0463-OA
  6. BORG GAV, 1982, MED SCI SPORT EXER, V14, P377, DOI 10.1249/00005768-198205000-00012
  7. Crapo RO, 2002, AM J RESP CRIT CARE, V166, P111, DOI 10.1164/rccm.166/1/111
  8. Crausman RS, 1996, AM J RESP CRIT CARE, V153, P426, DOI 10.1164/ajrccm.153.1.8542154
  9. Dauriat G, 2006, TRANSPLANTATION, V81, P746, DOI 10.1097/01.tp.0000200304.64613.af
  10. Elia D, 2015, EUR J INTERN MED, V26, P351, DOI 10.1016/j.ejim.2015.04.001
  11. Fartoukh M, 2000, AM J RESP CRIT CARE, V161, P216, DOI 10.1164/ajrccm.161.1.9807024
  12. Fonseca GHH, 2012, EUR RESPIR J, V39, P112, DOI 10.1183/09031936.00134410
  13. Freitas CSG, 2017, ORPHANET J RARE DIS, V12, DOI 10.1186/s13023-017-0626-0
  14. Galie N, 2016, EUR HEART J, V37, P67, DOI 10.1093/eurheartj/ehv317
  15. Hoeper MM, 2013, J AM COLL CARDIOL, V62, pD42, DOI 10.1016/j.jacc.2013.10.032
  16. Le Pavec J, 2012, CHEST, V142, P1150, DOI 10.1378/chest.11-2490
  17. Nathan SD, 2008, RESP MED, V102, P1305, DOI 10.1016/j.rmed.2008.03.022
  18. Neder JA, 1999, EUR RESPIR J, V14, P1304, DOI 10.1183/09031936.99.14613049
  19. Neder JA, 1999, BRAZ J MED BIOL RES, V32, P729, DOI 10.1590/S0100-879X1999000600008
  20. Neder JA, 1999, BRAZ J MED BIOL RES, V32, P703, DOI 10.1590/S0100-879X1999000600006
  21. O'Donnell DE, 2001, AM J RESP CRIT CARE, V164, P770, DOI 10.1164/ajrccm.164.5.2012122
  22. O'Donnell DE, 2016, EUR RESPIR REV, V25, P333, DOI 10.1183/16000617.0054-2016
  23. Pereira CAC, 2002, J PNEUMOL S3, V28, pS1
  24. Pereira Carlos Alberto de Castro, 2007, J. bras. pneumol., V33, P397, DOI 10.1590/S1806-37132007000400008
  25. Rolland-Debord C, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170035
  26. Ruocco G, 2015, RESP MED, V109, P406, DOI 10.1016/j.rmed.2014.12.011
  27. Simonneau G, 2019, EUR RESPIR J, V53, DOI 10.1183/13993003.01913-2018
  28. Soares MR, 2011, J BRAS PNEUMOL, V37, P576, DOI 10.1590/S1806-37132011000500003
  29. STUBBING DG, 1980, J APPL PHYSIOL, V49, P511
  30. Tazi A, 2006, EUR RESPIR J, V27, P1272, DOI 10.1183/09031936.06.00024004
  31. Tazi A, 2015, ORPHANET J RARE DIS, V10, DOI 10.1186/s13023-015-0249-2
  32. Vassallo R, 2017, THORAX, V72, P937, DOI 10.1136/thoraxjnl-2017-210125
  33. WARE JE, 1992, MED CARE, V30, P473, DOI 10.1097/00005650-199206000-00002
  34. Weatherald J, 2018, ERS MONOGR, V8, P160, DOI 10.1183/2312508X.10011517