Aerobic exercise in polluted urban environments: effects on airway defense mechanisms in young healthy amateur runners

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
IOP PUBLISHING LTD
Citação
JOURNAL OF BREATH RESEARCH, v.10, n.4, article ID 46018, 9p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In this study, the effects of aerobic exercise on the upper airways and their defense mechanisms were investigated in athletes. The athletes ran in two different environments: the downtown streets of the city of Sao Paulo (Street), more polluted, and an urban forest (Forest), less polluted. Thirty-eight young healthy athletes ran for 45 min d(-1) randomly during five consecutive days, with an interval of 48 h before changing environment. Clinical parameters and respiratory tract defense markers were evaluated before and after the first run on Mondays (1 d) and on Fridays (5 d). Street presented higher mean PM2.5 concentrations (65.1 +/- 39.1 mu gm(-3), p < 0.001) and lower temperature (22.0 degrees C, p = 0.010) than Forest (22.6 +/- 15.3 mu g m(-3) and 22.8 degrees C). After 1 d Street running, subjects showed an increment in heart rate (p < 0.001). At day 5, there was twice the number of athletes with impaired nasal mucociliary clearance (MCC) in the Street runners group when compared to the Forest runners group. Exhaled breath condensate pH values increased in the Forest group, with significant differences between groups in day 1 (p = 0.006) and day 5 (p < 0.001), despite the fact that both groups showed values within the normal range. After exposure to both environments, the number of cells in the nasal lavage fluid was reduced after exercise (p = 0.014), without alterations in cell type and IL-8 and IL-10 concentrations. Aerobic exercise can either maintain or acutely enhance MCC and it may help to regulate inflammatory responses in the airways. Here we show that exercise practice in polluted outdoor environment, over a 5 d period, impairs MCC. In contrast, athletes running in the less polluted environment (Forest) show higher exhaled breath condensate pH values when compared to those who exercised in a more polluted environment (Street).
Palavras-chave
air pollution, EBC pH, MCC, cytokines, particulate matter, aerobic exercise, running exercise
Referências
  1. Altug H, 2014, SCI TOTAL ENVIRON, V479, P201, DOI 10.1016/j.scitotenv.2014.01.127
  2. Belda J, 2001, CLIN EXP ALLERGY, V31, P1111, DOI 10.1046/j.1365-2222.2001.01133.x
  3. Brito Jose Mara de, 2014, J Appl Physiol (1985), V117, P492, DOI 10.1152/japplphysiol.00156.2014
  4. CAMNER P, 1976, ARCH ENVIRON HEALTH, V31, P79
  5. CAMNER P, 1974, ARCH ENVIRON HEALTH, V29, P220
  6. Carlisle AJ, 2001, BRIT J SPORT MED, V35, P214, DOI 10.1136/bjsm.35.4.214
  7. Danielides V, 2002, ACTA OTO-LARYNGOL, V122, P655, DOI 10.1080/000164802320396358
  8. de Oliveira-Maul JP, 2013, CHEST, V143, P1091, DOI 10.1378/chest.12-1183
  9. Dodig S, 2013, BIOCHEM MEDICA, V23, P281
  10. EPA, 2016, NAT AMB AIR QUAL STA
  11. Ferdinands J M, 2008, ENV HLTH, V7, P1
  12. Filho MAP, 2008, BRAZ J MED BIOL RES, V41, P526
  13. FOSTER WM, 1976, J APPL PHYSIOL, V41, P146
  14. Ge WZ, 2013, BIOMED ENVIRON SCI, V26, P222, DOI 10.3967/0895-3988.2013.03.009
  15. Goto DM, 2011, ENVIRON RES, V111, P664, DOI 10.1016/j.envres.2011.03.006
  16. Gowdy K, 2008, TOXICOL APPL PHARM, V229, P310, DOI 10.1016/j.taap.2008.01.040
  17. Graudenz GS, 2006, J ALLERGY CLIN IMMUN, V118, P1126, DOI 10.1016/j.jaci.2006.07.005
  18. Greenwald R, 2009, PEDIATR PULM, V44, P768, DOI 10.1002/ppul.21055
  19. Langrish JP, 2012, ENVIRON HEALTH PERSP, V120, P367, DOI 10.1289/ehp.1103898
  20. Lima Thamires Marques de, 2013, Clinics (Sao Paulo), V68, P1488, DOI 10.6061/clinics/2013(12)03
  21. MACLURE M, 1991, AM J EPIDEMIOL, V133, P144
  22. Maynard RL, 1999, OCCUP ENVIRON MED, V56, P647
  23. MUNS G, 1995, INT J SPORTS MED, V16, P209, DOI 10.1055/s-2007-972993
  24. Nakagawa NK, 2005, CHEST, V128, P2772, DOI 10.1378/chest.128.4.2772
  25. Nicola ML, 2014, CHEST, V145, P998, DOI 10.1378/chest.13-1355
  26. Novaes P, 2007, ENVIRON HEALTH PERSP, V115, P1753, DOI 10.1289/ehp.10363
  27. Utiyama DMO, 2016, CLINICS, V71, P344, DOI 10.6061/clinics/2016(06)10
  28. Paget-Brown AO, 2006, CHEST, V129, P426, DOI 10.1378/chest.129.2.426
  29. Petersen AMW, 2005, J APPL PHYSIOL, V98, P1154, DOI 10.1152/japplphysiol.00164.2004
  30. Ramos EMC, 2015, RESP CARE, V60, P1575, DOI 10.4187/respcare.04093
  31. Riediker M, 2007, J AEROSOL MED, V20, P13, DOI 10.1089/jam.2006.0567
  32. Sauvain JJ, 2014, J AEROSOL MED PULM D, V27, P449, DOI 10.1089/jamp.2013.1101
  33. Schauer J.J., 2006, HLTH EFFECT I, V133, P1
  34. SHEPHARD RJ, 1984, CAN MED ASSOC J, V131, P105
  35. Tainio M, 2016, PREV MED, V87, P233, DOI 10.1016/j.ypmed.2016.02.002
  36. Vaisberg M, 2013, EXERC IMMUNOL REV, V19, P49
  37. WHO (World Health Organization), 2006, AIR QUAL GUID PART M
  38. Wu SW, 2014, CHEMOSPHERE, V108, P168, DOI 10.1016/j.chemosphere.2014.01.032
  39. Yoshizaki K, 2010, INHAL TOXICOL, V22, P610, DOI 10.3109/08958371003621633
  40. Zhang J, 2013, RES REP HLTH EFF I, V174, P5