Glutaminolysis dynamics during astrocytoma progression correlates with tumor aggressiveness

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
SANTOS, Suzana de Siqueira
SANTOS, Ancely Ferreira dos
ARINI, Gabriel Santos
BAPTISTA, Mauricio S.
LERARIO, Antonio Marcondes
Citação
CANCER & METABOLISM, v.9, n.1, article ID 18, 15p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Glioblastoma is the most frequent and high-grade adult malignant central nervous system tumor. The prognosis is still poor despite the use of combined therapy involving maximal surgical resection, radiotherapy, and chemotherapy. Metabolic reprogramming currently is recognized as one of the hallmarks of cancer. Glutamine metabolism through glutaminolysis has been associated with tumor cell maintenance and survival, and with antioxidative stress through glutathione (GSH) synthesis. Methods In the present study, we analyzed the glutaminolysis-related gene expression levels in our cohort of 153 astrocytomas of different malignant grades and 22 non-neoplastic brain samples through qRT-PCR. Additionally, we investigated the protein expression profile of the key regulator of glutaminolysis (GLS), glutamate dehydrogenase (GLUD1), and glutamate pyruvate transaminase (GPT2) in these samples. We also investigated the glutathione synthase (GS) protein profile and the GSH levels in different grades of astrocytomas. The differential gene expressions were validated in silico on the TCGA database. Results We found an increase of glutaminase isoform 2 gene (GLSiso2) expression in all grades of astrocytoma compared to non-neoplastic brain tissue, with a gradual expression increment in parallel to malignancy. Genes coding for GLUD1 and GPT2 expression levels varied according to the grade of malignancy, being downregulated in glioblastoma, and upregulated in lower grades of astrocytoma (AGII-AGIII). Significant low GLUD1 and GPT2 protein levels were observed in the mesenchymal subtype of GBM. Conclusions In glioblastoma, particularly in the mesenchymal subtype, the downregulation of both genes and proteins (GLUD1 and GPT2) increases the source of glutamate for GSH synthesis and enhances tumor cell fitness due to increased antioxidative capacity. In contrast, in lower-grade astrocytoma, mainly in those harboring the IDH1 mutation, the gene expression profile indicates that tumor cells might be sensitized to oxidative stress due to reduced GSH synthesis. The measurement of GLUD1 and GPT2 metabolic substrates, ammonia, and alanine, by noninvasive MR spectroscopy, may potentially allow the identification of IDH1(mut) AGII and AGIII progression towards secondary GBM.
Palavras-chave
Glutaminolysis, GBM, Low-grade astrocytoma, IDH1 mutation, Astrocytoma progression
Referências
  1. Albers MJ, 2008, CANCER RES, V68, P8607, DOI 10.1158/0008-5472.CAN-08-0749
  2. Altman BJ, 2016, NAT REV CANCER, V16, P619, DOI 10.1038/nrc.2016.71
  3. Alves Maria José Ferreira, 2016, MedicalExpress (São Paulo, online), V3, pM160605, DOI 10.5935/medicalexpress.2016.06.05
  4. Ardlie KG, 2015, SCIENCE, V348, P648, DOI 10.1126/science.1262110
  5. Borodovsky A, 2012, CURR OPIN ONCOL, V24, P83, DOI 10.1097/CCO.0b013e32834d816a
  6. Brindle KM, 2011, MAGN RESON MED, V66, P505, DOI 10.1002/mrm.22999
  7. Cassago A, 2012, P NATL ACAD SCI USA, V109, P1092, DOI 10.1073/pnas.1112495109
  8. Cluntun AA, 2017, TRENDS CANCER, V3, P169, DOI 10.1016/j.trecan.2017.01.005
  9. Crisi G, 2011, NEURORADIOL J, V24, P846, DOI 10.1177/197140091102400603
  10. CURTHOYS NP, 1995, ANNU REV NUTR, V15, P133, DOI 10.1146/annurev.nu.15.070195.001025
  11. Daye D, 2012, SEMIN CELL DEV BIOL, V23, P362, DOI 10.1016/j.semcdb.2012.02.002
  12. DeBerardinis RJ, 2010, ONCOGENE, V29, P313, DOI 10.1038/onc.2009.358
  13. DeBerardinis RJ, 2008, CURR OPIN GENET DEV, V18, P54, DOI 10.1016/j.gde.2008.02.003
  14. Dolecek TA, 2012, NEURO-ONCOLOGY, V14, pv1, DOI 10.1093/neuonc/nos218
  15. Estrela JM, 2006, CRIT REV CL LAB SCI, V43, P143, DOI 10.1080/10408360500523878
  16. Forman HJ, 2009, MOL ASPECTS MED, V30, P1, DOI 10.1016/j.mam.2008.08.006
  17. Galatro TF., 2017, MED EXPRESS, V4
  18. Gao P, 2009, NATURE, V458, P762, DOI 10.1038/nature07823
  19. Garrett M, 2018, CANCER METAB, V6, DOI 10.1186/s40170-018-0177-4
  20. Gross MI, 2014, MOL CANCER THER, V13, P890, DOI 10.1158/1535-7163.MCT-13-0870
  21. Hazany S, 2007, NEURORADIOLOGY, V49, P121, DOI 10.1007/s00234-006-0167-z
  22. Heiden MGV, 2009, SCIENCE, V324, P1029, DOI 10.1126/science.1160809
  23. Herranz D, 2017, ONCOTARGET, V8, P10761, DOI 10.18632/oncotarget.14384
  24. Hu WW, 2010, P NATL ACAD SCI USA, V107, P7455, DOI 10.1073/pnas.1001006107
  25. Jacque N, 2015, BLOOD, V126, P1346, DOI 10.1182/blood-2015-01-621870
  26. Jin L, 2016, ONCOGENE, V35, P3619, DOI 10.1038/onc.2015.447
  27. Jones C, 2012, NAT REV CLIN ONCOL, V9, P400, DOI 10.1038/nrclinonc.2012.87
  28. Katt WP, 2014, DRUG DISCOV TODAY, V19, P450, DOI 10.1016/j.drudis.2013.10.008
  29. Krishna G, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12080811
  30. Lewerenz J, 2013, ANTIOXID REDOX SIGN, V18, P522, DOI 10.1089/ars.2011.4391
  31. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  32. Louis DN, 2007, ACTA NEUROPATHOL, V114, P97, DOI 10.1007/s00401-007-0243-4
  33. Luengo A, 2017, CELL CHEM BIOL, V24, P1161, DOI 10.1016/j.chembiol.2017.08.028
  34. Lv HH, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/3150145
  35. Marquez J, 2017, NEUROCHEM RES, V42, P1735, DOI 10.1007/s11064-017-2212-1
  36. Mates JM, 2009, INT J BIOCHEM CELL B, V41, P2051, DOI 10.1016/j.biocel.2009.03.003
  37. Maus A, 2017, AMINO ACIDS, V49, P21, DOI 10.1007/s00726-016-2342-9
  38. McBrayer SK, 2018, CELL, V175, P101, DOI 10.1016/j.cell.2018.08.038
  39. Meister A., 1995, GLUTATHIONE METABOLI, P3
  40. Miranda-Filho A, 2016, NEURO ONCOL, V19
  41. Molinaro AM, 2019, NAT REV NEUROL, V15, P405, DOI 10.1038/s41582-019-0220-2
  42. Nguyen T-L, 2018, CANC DRUG RESIST
  43. Obara-Michlewska M, 2020, CANCERS, V12, DOI 10.3390/cancers12020310
  44. Ohka F, 2014, TUMOR BIOL, V35, P5911, DOI 10.1007/s13277-014-1784-5
  45. Oruganty K, 2020, CANCER METAB, V8, DOI 10.1186/s40170-020-0211-1
  46. Pavlova NN, 2016, CELL METAB, V23, P27, DOI 10.1016/j.cmet.2015.12.006
  47. Peeters TH, 2019, CANCER METAB, V7, DOI 10.1186/s40170-019-0198-7
  48. Rocha CRR, 2014, CELL DEATH DIS, V5, DOI 10.1038/cddis.2014.465
  49. Sanai N, 2005, NEW ENGL J MED, V353, P811, DOI 10.1056/NEJMra043666
  50. Sidaway P, 2017, NAT REV CLIN ONCOL, V14, P587, DOI [10.1038/nrclinonc.2017.122, 10.1038/nrclinonc.2017.132, 10.1038/nrclinonc.2017.90]
  51. Siegel RL, 2019, CA-CANCER J CLIN, V69, P7, DOI 10.3322/caac.21551
  52. Strickland M, 2017, FRONT CELL DEV BIOL, V5, DOI 10.3389/fcell.2017.00043
  53. Suzuki S, 2010, P NATL ACAD SCI USA, V107, P7461, DOI 10.1073/pnas.1002459107
  54. Szeliga M, 2016, MOL CARCINOGEN, V55, P1309, DOI 10.1002/mc.22372
  55. Touat M, 2020, NATURE, V580, P517, DOI 10.1038/s41586-020-2209-9
  56. Traverso N, 2013, OXID MED CELL LONGEV, V2013, DOI 10.1155/2013/972913
  57. Valente V, 2009, BMC MOL BIOL, V10, DOI 10.1186/1471-2199-10-17
  58. van Lith SAM, 2014, BBA-REV CANCER, V1846, P66, DOI 10.1016/j.bbcan.2014.04.004
  59. Vander Heiden MG, 2011, NAT REV DRUG DISCOV, V10, P671, DOI 10.1038/nrd3504
  60. Verhaak RGW, 2010, CANCER CELL, V17, P98, DOI 10.1016/j.ccr.2009.12.020
  61. Vijayakumar SN, 2015, RSC ADV, V5, P41751, DOI 10.1039/c5ra06505d
  62. Walker MC, 2016, J IND MICROBIOL BIOT, V43, P419, DOI 10.1007/s10295-015-1665-y
  63. Wang JB, 2010, CANCER CELL, V18, P207, DOI 10.1016/j.ccr.2010.08.009
  64. Wang QH, 2017, CANCER CELL, V32, P42, DOI 10.1016/j.ccell.2017.06.003
  65. Wang ZQ, 2018, CANCER LETT, V428, P21, DOI 10.1016/j.canlet.2018.04.021
  66. Xiang Y, 2015, J CLIN INVEST, V125, P2293, DOI 10.1172/JCI75836
  67. Xiao D., 2015, ONCOTARGET, V6, P38
  68. Yan H, 2009, NEW ENGL J MED, V360, P765, DOI 10.1056/NEJMoa0808710