Molecular and genetic characterization of a large Brazilian cohort presenting hearing loss

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
PEDROSO-CAMPOS, Vinicius
SONODA, Cindy Yukimi
LONGATI, Estefany Uchoa da Silva de Oliveira
MARIANO, Diego
Citação
HUMAN GENETICS, v.141, n.3/Abr, Special Issue, p.519-538, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Hearing loss is one of the most common sensory defects, affecting 5.5% of the worldwide population and significantly impacting health and social life. It is mainly attributed to genetic causes, but their relative contribution reflects the geographical region's socio-economic development. Extreme genetic heterogeneity with hundreds of deafness genes involved poses challenges for molecular diagnosis. Here we report the investigation of 542 hearing-impaired subjects from all Brazilian regions to search for genetic causes. Biallelic GJB2/GJB6 causative variants were identified in 12.9% (the lowest frequency was found in the Northern region, 7.7%), 0.4% carried GJB2 dominant variants, and 0.6% had the m.1555A > G variant (one aminoglycoside-related). In addition, other genetic screenings, employed in selected probands according to clinical presentation and presumptive inheritance patterns, identified causative variants in 2.4%. Ear malformations and auditory neuropathy were diagnosed in 10.8% and 3.5% of probands, respectively. In 3.8% of prelingual/perilingual cases, Waardenburg syndrome was clinically diagnosed, and in 71.4%, these diagnoses were confirmed with pathogenic variants revealed; seven out of them were novel, including one CNV. All these genetic screening strategies revealed causative variants in 16.2% of the cases. Based on causative variants in the molecular diagnosis and genealogy analyses, a probable genetic etiology was found in similar to 50% of the cases. The present study highlights the relevance of GJB2/GJB6 as a cause of hearing loss in all Brazilian regions and the importance of screening unselected samples for estimating frequencies. Moreover, when a comprehensive screening is not available, molecular diagnosis can be enhanced by selecting probands for specific screenings.
Palavras-chave
Referências
  1. Abreu-Silva RS, 2006, BRAZ J MED BIOL RES, V39, P219, DOI 10.1590/S0100-879X2006000200008
  2. Albert S, 2006, EUR J HUM GENET, V14, P773, DOI 10.1038/sj.ejhg.5201611
  3. Aldhafeeri AM, 2016, SAUDI MED J, V37, P1096, DOI 10.15537/smj.2016.10.15025
  4. Alford RL, 2014, GENET MED, V16, P347, DOI 10.1038/gim.2014.2
  5. Marinho ACA, 2020, REV SAUDE PUBL, V54, DOI 10.11606/s1518-8787.2020054001643
  6. Angeli S, 2000, ACTA OTO-LARYNGOL, V120, P133
  7. Arnold K, 2006, BIOINFORMATICS, V22, P195, DOI 10.1093/bioinformatics/bti770
  8. Arnos KS, 2003, EAR HEARING, V24, P324, DOI 10.1097/01.AUD.0000079800.64741.CF
  9. Martins FTA, 2013, BMC MED GENET, V14, DOI 10.1186/1471-2350-14-112
  10. Baker NA, 2001, P NATL ACAD SCI USA, V98, P10037, DOI 10.1073/pnas.181342398
  11. Batissoco AC, 2009, EAR HEARING, V30, P1, DOI 10.1097/AUD.0b013e31819144ad
  12. Studer G, 2020, BIOINFORMATICS, V36, P1765, DOI 10.1093/bioinformatics/btz828
  13. Sun LH, 2016, SCI REP-UK, V6, DOI 10.1038/srep35498
  14. TASSABEHJI M, 1995, HUM MOL GENET, V4, P2131, DOI 10.1093/hmg/4.11.2131
  15. Thongpradit S, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.589784
  16. Toms M, 2020, THER ADV OPHTHALMOL, V12, DOI 10.1177/2515841420952194
  17. Utrera R, 2007, GENET TEST, V11, P347, DOI 10.1089/gte.2006.0526
  18. Van Camp G, 2021, HEREDITARY HEARING L
  19. WAARDENBURG PJ, 1951, AM J HUM GENET, V3, P195
  20. Wildhardt G, 2013, BMJ OPEN, V3, DOI 10.1136/bmjopen-2012-001917
  21. Berman HM, 2000, NUCLEIC ACIDS RES, V28, P235, DOI 10.1093/nar/28.1.235
  22. Biasini Marco, 2014, Nucleic Acids Res, V42, pW252, DOI 10.1093/nar/gku340
  23. Bondurand N, 2007, AM J HUM GENET, V81, P1169, DOI 10.1086/522090
  24. Brozkova DS, 2021, GENES-BASEL, V12, DOI 10.3390/genes12050684
  25. Bueno AS, 2022, EUR J HUM GENET, V30, P13, DOI 10.1038/s41431-021-00891-0
  26. Busa J, 2007, PEDIATRICS, V120, P898, DOI 10.1542/peds.2007-2333
  27. Campbell C, 2001, HUM MUTAT, V17, P403, DOI 10.1002/humu.1116
  28. Carranza C, 2016, CLIN GENET, V89, P461, DOI 10.1111/cge.12676
  29. Chai Y, 2015, CLIN GENET, V87, P350, DOI 10.1111/cge.12387
  30. Chan DK, 2014, LARYNGOSCOPE, V124, pE34, DOI 10.1002/lary.24332
  31. Chaoui A, 2011, HUM MUTAT, V32, P1436, DOI 10.1002/humu.21583
  32. Chattaraj P, 2017, J MED GENET, V54, P665, DOI 10.1136/jmedgenet-2017-104721
  33. Coyle B, 1998, HUM MOL GENET, V7, P1105, DOI 10.1093/hmg/7.7.1105
  34. da Silva RS, 2020, HUM MOL GENET, V29, P3691, DOI 10.1093/hmg/ddaa240
  35. Dantas VGL, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26818-2
  36. de Lima YS, 2018, HEARING RES, V370, P181, DOI 10.1016/j.heares.2018.10.008
  37. del Castillo FJ, 2005, J MED GENET, V42, P588, DOI 10.1136/jmg.2004.028324
  38. Dolinsky TJ, 2004, NUCLEIC ACIDS RES, V32, pW665, DOI 10.1093/nar/gkh381
  39. Dror AA, 2010, NEURON, V68, P293, DOI 10.1016/j.neuron.2010.10.011
  40. Elmaleh-Berges M, 2013, AM J NEURORADIOL, V34, P1257, DOI 10.3174/ajnr.A3367
  41. Estivill X, 1998, AM J HUM GENET, V62, P27, DOI 10.1086/301676
  42. Faistauer Marina, 2021, Braz J Otorhinolaryngol, DOI 10.1016/j.bjorl.2021.02.012
  43. Felix F, 2014, Rev Laryngol Otol Rhinol (Bord), V135, P171
  44. Fernandez RM, 2014, AM J MED GENET A, V164, P542, DOI 10.1002/ajmg.a.36302
  45. Ferreira, 2013, ACR, V18, P285, DOI 10.1590/S2317-64312013000400009
  46. Foerst A, 2006, INT J PEDIATR OTORHI, V70, P1415, DOI 10.1016/j.ijporl.2006.02.010
  47. Grill Christine, 2013, Hum Mol Genet, V22, P4357, DOI 10.1093/hmg/ddt285
  48. Hilgert N, 2009, MUTAT RES-REV MUTAT, V681, P189, DOI 10.1016/j.mrrev.2008.08.002
  49. IBGE, 2021, I BRAS GEOGR EST HOM
  50. Inoue K, 2004, NAT GENET, V36, P361, DOI 10.1038/ng1322
  51. Jaganathan K, 2019, CELL, V176, P535, DOI 10.1016/j.cell.2018.12.015
  52. Jalilian N, 2015, GENE, V574, P302, DOI 10.1016/j.gene.2015.08.023
  53. Jubb HC, 2017, J MOL BIOL, V429, P365, DOI 10.1016/j.jmb.2016.12.004
  54. Karczewski KJ, 2020, NATURE, V581, P434, DOI 10.1038/s41586-020-2308-7
  55. Kircher M, 2014, NAT GENET, V46, P310, DOI 10.1038/ng.2892
  56. Koffler T, 2015, OTOLARYNG CLIN N AM, V48, P1041, DOI 10.1016/j.otc.2015.07.007
  57. Lek M, 2016, NATURE, V536, P285, DOI 10.1038/nature19057
  58. Lezirovitz K, 2009, CLIN GENET, V75, P490, DOI 10.1111/j.1399-0004.2008.01130.x
  59. Lezirovitz K, 2008, EUR J HUM GENET, V16, P89, DOI 10.1038/sj.ejhg.5201917
  60. Lezirovitz K, 2022, HUM GENET, V141, P539, DOI 10.1007/s00439-021-02354-4
  61. Lezirovitz K, 2020, HUM MOL GENET, V29, P1520, DOI 10.1093/hmg/ddaa075
  62. Liang FH, 2016, INT J PEDIATR OTORHI, V91, P67, DOI 10.1016/j.ijporl.2016.10.019
  63. Likar T, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0188578
  64. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  65. Lovell SC, 2003, PROTEINS, V50, P437, DOI 10.1002/prot.10286
  66. Madden C, 2003, LARYNGOSCOPE, V113, P2035, DOI 10.1097/00005537-200311000-00034
  67. Manzoli GN, 2013, INT J PEDIATR OTORHI, V77, P1077, DOI 10.1016/j.ijporl.2013.04.001
  68. Maris M, 2011, INT J PEDIATR OTORHI, V75, P973, DOI 10.1016/j.ijporl.2011.04.012
  69. Mattos Wilian Maduell de, 2009, Braz J Otorhinolaryngol, V75, P237
  70. Melo US, 2014, INT J MOL EPIDEMIOL, V5, P11
  71. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  72. NIDCD, 2021, STAT HEAR BAL EAR IN
  73. Nonose RW, 2018, BMC MED GENET, V19, DOI 10.1186/s12881-018-0585-x
  74. da Silva MAOM, 2015, BRAZ J OTORHINOLAR, V81, P321, DOI 10.1016/j.bjorl.2015.03.005
  75. Oza AM, 2018, HUM MUTAT, V39, P1593, DOI 10.1002/humu.23630
  76. Pang XH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100483
  77. Pardono E, 2003, AM J MED GENET A, V117A, P223, DOI 10.1002/ajmg.a.10193
  78. Pena SDJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017063
  79. Penido RC, 2013, BRAZ J OTORHINOLAR, V79, P429, DOI 10.5935/1808-8694.20130077
  80. Pingault V, 2002, HUM GENET, V111, P198, DOI 10.1007/s00439-002-0765-8
  81. Pingault V, 2010, HUM MUTAT, V31, P391, DOI 10.1002/humu.21211
  82. Bocangel MAP, 2018, EUR J MED GENET, V61, P348, DOI 10.1016/j.ejmg.2018.01.012
  83. Pryor SP, 2005, J MED GENET, V42, P159, DOI 10.1136/jmg.2004.024208
  84. Psarommatis IM, 1997, INT J PEDIATR OTORHI, V39, P237, DOI 10.1016/S0165-5876(97)01491-2
  85. RAMACHANDRAN GN, 1963, J MOL BIOL, V7, P95, DOI 10.1016/S0022-2836(63)80023-6
  86. Rance Gary, 2005, Trends Amplif, V9, P1, DOI 10.1177/108471380500900102
  87. Ranganathan S., 2019, ENCY BIOINFORMATICS, P38, DOI [10.1504/IJBRA.2014.059536, DOI 10.1016/B978-0-12-809633-8.20484-6]
  88. Read AP, 1997, J MED GENET, V34, P656, DOI 10.1136/jmg.34.8.656
  89. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  90. Romanos J, 2009, J HUM GENET, V54, P382, DOI 10.1038/jhg.2009.45
  91. Sampaio-Silva J, 2018, ANN HUM GENET, V82, P23, DOI 10.1111/ahg.12213
  92. Sartorato EL, 2000, CLIN GENET, V58, P339, DOI 10.1034/j.1399-0004.2000.580415.x
  93. Seeman P, 2006, CLIN GENET, V69, P410, DOI 10.1111/j.1399-0004.2006.00602.x
  94. de Castro LSS, 2013, BRAZ J OTORHINOLAR, V79, P95, DOI 10.5935/1808-8694.20130016
  95. Shamsani J, 2019, BIOINFORMATICS, V35, P2315, DOI 10.1093/bioinformatics/bty960
  96. Shearer AE, 2014, AM J HUM GENET, V95, P445, DOI 10.1016/j.ajhg.2014.09.001
  97. Shearer AE., 2017, GENEREVIEWS
  98. SHEFFER R, 1992, AM J MED GENET, V42, P320, DOI 10.1002/ajmg.1320420312
  99. Shen J, 2019, GENET MED, V21, P2442, DOI 10.1038/s41436-019-0535-9
  100. Sievers F, 2014, METHODS MOL BIOL, V1079, P105, DOI 10.1007/978-1-62703-646-7_6
  101. Sloan-Heggen CM, 2016, HUM GENET, V135, P441, DOI 10.1007/s00439-016-1648-8
  102. Snoeckx RL, 2005, AM J HUM GENET, V77, P945, DOI 10.1086/497996
  103. Spinelli, 1999, BRAZ J DYSMORPHOL SP, V2, P33