Spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals

Carregando...
Imagem de Miniatura
Citações na Scopus
20
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
BRIZZI, Andrea
WHITTAKER, Charles
SERVO, Luciana M. S.
HAWRYLUK, Iwona
JR, Carlos A. Prete
SOUZA, William M. de
AGUIAR, Renato S.
ARAUJO, Leonardo J. T.
BASTOS, Leonardo S.
BLENKINSOP, Alexandra
Citação
NATURE MEDICINE, v.28, n.7, p.1476-+, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Analysis of individual-level patient records from Brazil reveals that the extensive shocks in COVID-19 mortality rates are associated with pre-pandemic geographic inequities as well as shortages in healthcare capacity during the pandemic. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant of concern has spread rapidly across Brazil since late 2020, causing substantial infection and death waves. Here we used individual-level patient records after hospitalization with suspected or confirmed coronavirus disease 2019 (COVID-19) between 20 January 2020 and 26 July 2021 to document temporary, sweeping shocks in hospital fatality rates that followed the spread of Gamma across 14 state capitals, during which typically more than half of hospitalized patients aged 70 years and older died. We show that such extensive shocks in COVID-19 in-hospital fatality rates also existed before the detection of Gamma. Using a Bayesian fatality rate model, we found that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates were primarily associated with geographic inequities and shortages in healthcare capacity. We estimate that approximately half of the COVID-19 deaths in hospitals in the 14 cities could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization and pandemic preparedness are critical to minimize population-wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries.
Palavras-chave
Referências
  1. Andrade RD, 2020, BMJ-BRIT MED J, V370, DOI 10.1136/bmj.m3032
  2. [Anonymous], 2020, SRAG 2020 BANCO DADO
  3. [Anonymous], 2020, PESQUISA NACL AMOSTR
  4. [Anonymous], 2021, SRAG 2021 2022 BANCO
  5. [Anonymous], ARTIC NETWORK FIELDB
  6. [Anonymous], 2021, GENOMIC SEQUENCING S
  7. [Anonymous], 2020, RESOLUTION 2 271 FEB
  8. Baum F, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n91
  9. Brazeau N., 2020, COVID 19 INFECT FATA, DOI [10.25561/83545, DOI 10.25561/83545]
  10. Brito A. F., 2021, MEDRXIV, DOI [10.1101/2021.08.21.21262393, DOI 10.1101/2021.08.21.21262393]
  11. Cadastro Nacional de Estabelecimentos de Sade, DATASUS
  12. Carpenter B, 2017, J STAT SOFTW, V76, P1, DOI 10.18637/jss.v076.i01
  13. Castro MC, 2021, NAT MED, V27, P1629, DOI 10.1038/s41591-021-01437-z
  14. Castro MC, 2021, SCIENCE, V372, P821, DOI 10.1126/science.abh1558
  15. Castro MC, 2019, LANCET, V394, P345, DOI 10.1016/S0140-6736(19)31243-7
  16. Clark A, 2020, LANCET GLOB HEALTH, V8, P1003, DOI 10.1016/S2214-109X(20)30264-3
  17. Clemens SAC, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-25982-w
  18. Davies NG, 2021, NATURE, V593, P270, DOI [10.1038/s41586-021-03426-1, 10.1101/2021.02.01.21250959]
  19. Davies Nicholas G, 2021, Science, V372, DOI 10.1126/science.abg3055
  20. de Albuquerque MV, 2020, CAD SAUDE PUBLICA, V36, DOI [10.1590/0102-311X00208720, 10.1590/0102-311x00208720]
  21. de Oliveira M. H. S., 2021, PREPRINT, DOI [10.1101/2021.03.24.21254046(2021, DOI 10.1101/2021.03.24.21254046(2021]
  22. Santos AAD, 2021, SCI DATA, V8, DOI 10.1038/s41597-021-00859-1
  23. de Souza WM, 2020, NAT HUM BEHAV, V4, P856, DOI 10.1038/s41562-020-0928-4
  24. Didelot X, 2021, MOL BIOL EVOL, V38, P307, DOI 10.1093/molbev/msaa193
  25. du Plessis L, 2021, SCIENCE, V371, P708, DOI 10.1126/science.abf2946
  26. Dyer O, 2021, BMJ-BRIT MED J, V375, DOI 10.1136/bmj.n3013
  27. Faria NR, 2021, SCIENCE, V372, P815, DOI [10.1126/science.abh2644, 10.1101/2021.02.26.21252554, 10.1126/science.abh2644Article]
  28. Fellows M, 2021, FRONT PSYCHIATRY, V12, DOI 10.3389/fpsyt.2021.638359
  29. Freitas ARR., 2021, LANCET REG HLTH AM, V1, P100021
  30. Fujino T, 2021, EMERG INFECT DIS, V27, P1243, DOI 10.3201/eid2704.210138
  31. Funcia FR, 2019, CIENC SAUDE COLETIVA, V24, P4405, DOI 10.1590/1413-812320182412.25892019
  32. Grint DJ, 2022, CLIN INFECT DIS, V75, pE1120, DOI 10.1093/cid/ciab754
  33. Gutierrez B, 2021, VIRUS EVOL, V7, DOI 10.1093/ve/veab051
  34. Haldane V, 2021, NAT MED, V27, P964, DOI 10.1038/s41591-021-01381-y
  35. Harvey WT, 2021, NAT REV MICROBIOL, V19, P409, DOI 10.1038/s41579-021-00573-0
  36. HASEGAWA M, 1985, J MOL EVOL, V22, P160, DOI 10.1007/BF02101694
  37. Rocha TAH, 2018, CIENC SAUDE COLETIVA, V23, P229, DOI 10.1590/1413-81232018231.16672015
  38. Hiam L, 2021, LANCET, V398, P646, DOI 10.1016/S0140-6736(21)01650-0
  39. Hill V, 2019, MOL BIOL EVOL, V36, P2620, DOI 10.1093/molbev/msz172
  40. Hoffman MD, 2014, J MACH LEARN RES, V15, P1593
  41. JodoEduardo M., 2021, INFORM SOFTWARE TECH, V131
  42. Jukes T.H., 1969, MAMMALIAN PROTEIN ME, P21, DOI 10.1093/BIOINFORMATICS/BTM404
  43. Kadri SS, 2021, ANN INTERN MED, V174, P1240, DOI 10.7326/M21-1213
  44. Katoh Kazutaka, 2013, Mol Biol Evol, V30, P772, DOI 10.1093/molbev/mst010
  45. Khoury DS, 2021, NAT MED, V27, P1205, DOI 10.1038/s41591-021-01377-8
  46. Lal A, 2021, LANCET, V397, P61, DOI 10.1016/S0140-6736(20)32228-5
  47. Leite SN, 2021, CIENC SAUDE COLETIVA, V26, P1873, DOI 10.1590/1413-81232021265.01252021
  48. Lemey P, 2021, NATURE, V595, P713, DOI 10.1038/s41586-021-03754-2
  49. Lemey P, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000520
  50. Li SL, 2021, BMJ GLOB HEALTH, V6, DOI 10.1136/bmjgh-2021-004959
  51. Lytras T, 2022, SCAND J PUBLIC HEALT, V50, P671, DOI 10.1177/14034948211059968
  52. Machado FR, 2017, LANCET INFECT DIS, V17, P1180, DOI 10.1016/S1473-3099(17)30322-5
  53. Madhi SA, 2021, NEW ENGL J MED, V384, P1885, DOI 10.1056/NEJMoa2102214
  54. Malta M, 2021, ECLINICALMEDICINE, V32, DOI 10.1016/j.eclinm.2021.100757
  55. Martins AF, 2021, EUROSURVEILLANCE, V26, P8, DOI 10.2807/1560-7917.ES.2021.26.12.2100276
  56. Mendes Áquilas, 2018, Saúde debate, V42, P224, DOI 10.1590/0103-11042018s115
  57. Noronha KVMD, 2020, CAD SAUDE PUBLICA, V36, DOI 10.1590/0102-311X00115320
  58. Minh BQ, 2020, MOL BIOL EVOL, V37, P1530, DOI 10.1093/molbev/msaa015
  59. Minin VN, 2008, PHILOS T R SOC B, V363, P3985, DOI 10.1098/rstb.2008.0176
  60. Minin VN, 2008, J MATH BIOL, V56, P391, DOI 10.1007/s00285-007-0120-8
  61. Naveca FG, 2021, NAT MED, V27, P1230, DOI 10.1038/s41591-021-01378-7
  62. Nicolelis MAL, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-92263-3
  63. O'Brien JD, 2009, MOL BIOL EVOL, V26, P801, DOI 10.1093/molbev/msp003
  64. OToole A, 2022, PANGOLIN COVID 19 LI
  65. Pereira RHM, 2021, SOC SCI MED, V273, DOI 10.1016/j.socscimed.2021.113773
  66. Rambaut A, 2020, NAT MICROBIOL, V5, P1403, DOI 10.1038/s41564-020-0770-5
  67. Rambaut A, 2018, SYST BIOL, V67, P901, DOI 10.1093/sysbio/syy032
  68. Rambaut A, 2016, VIRUS EVOL, V2, DOI 10.1093/ve/vew007
  69. Ranzani O. T., BMJ, V374, pn2016
  70. Ranzani OT, 2021, LANCET RESP MED, V9, P407, DOI 10.1016/S2213-2600(20)30560-9
  71. Rocha R, 2021, LANCET GLOB HEALTH, V9, pE782, DOI 10.1016/S2214-109X(21)00081-4
  72. Rossman H, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22214-z
  73. Sheikh A, 2021, LANCET, V397, P2461, DOI 10.1016/S0140-6736(21)01358-1
  74. Shu YL, 2017, EUROSURVEILLANCE, V22, P2, DOI 10.2807/1560-7917.ES.2017.22.13.30494
  75. Sirleaf EJ, 2021, LANCET, V398, P101, DOI 10.1016/S0140-6736(21)01095-3
  76. Souza WM, 2021, LANCET MICROBE, V2, pE527, DOI 10.1016/S2666-5247(21)00129-4
  77. Suchard MA, 2018, VIRUS EVOL, V4, DOI 10.1093/ve/vey016
  78. Tegally H, 2021, NATURE, V592, P438, DOI 10.1038/s41586-021-03402-9
  79. Silva LVE, 2020, J MED INTERNET RES, V22, DOI 10.2196/21413
  80. Volz EM, 2017, VIRUS EVOL, V3, DOI 10.1093/ve/vex025
  81. Volz E, 2021, NATURE, V593, P266, DOI 10.1038/s41586-021-03470-x
  82. Voysey M, 2021, LANCET, V397, P881, DOI 10.1016/S0140-6736(21)00432-3
  83. Walker PGT, 2020, SCIENCE, V369, P413, DOI 10.1126/science.abc0035