Application of Whole-Exome Sequencing in for updates Detecting Copy Number Variants in Patients with Developmental Delay and/or Multiple Congenital Malformations

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
JOURNAL OF MOLECULAR DIAGNOSTICS, v.22, n.8, p.1041-1049, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Overcoming challenges for the unambiguous detection of copy number variations is essential to broaden our understanding of the role of genomic variants in the clinical phenotype. With the improvement of software and databases, whole-exome sequencing quickly can become an excellent strategy in the routine diagnosis of patients with a developmental delay and/or multiple congenital malformations. However, even after a detailed analysis of pathogenic single-nucleotide variants and indels in known disease genes, using whole-exome sequencing, some patients with suspected syndromic conditions are left without a conclusive diagnosis. These negative results could be the result of different factors including nongenetic etiologies, lack of knowledge about the genes that cause different disease phenotypes, or, in some cases, a deletion or duplication of genomic information not routinely detectable by whole-exome sequencing variant calling. Although copy number variant detection is possible using whole-exome sequencing data, such analysis presents significant challenges and cannot yet be used to replace chromosomal arrays for identification of deletions or duplications.
Palavras-chave
Referências
  1. Alkuraya FS, 2010, GENET MED, V12, P236, DOI 10.1097/GIM.0b013e3181ceb95d
  2. Bamshad MJ, 2011, NAT REV GENET, V12, P745, DOI 10.1038/nrg3031
  3. Bergant G, 2018, GENET MED, V20, P303, DOI 10.1038/gim.2017.142
  4. Bertier G, 2017, CRIT REV CL LAB SCI, V54, P134, DOI 10.1080/10408363.2016.1275516
  5. Bertier G, 2016, BMC MED GENOMICS, V9, DOI 10.1186/s12920-016-0213-6
  6. Carneiro MO, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-375
  7. Chaisson MJP, 2015, NATURE, V517, P608, DOI 10.1038/nature13907
  8. de Ligt J, 2013, HUM MUTAT, V34, P1439, DOI 10.1002/humu.22387
  9. Gambin T, 2017, NUCLEIC ACIDS RES, V45, P1633, DOI 10.1093/nar/gkw1237
  10. Guo Y, 2013, BIOMED RES INT, V2013, P7
  11. Han JY, 2019, ANN HUM GENET, V83, P115, DOI 10.1111/ahg.12294
  12. Harel T, 2018, CLIN GENET, V93, P439, DOI 10.1111/cge.13146
  13. Hehir-Kwa JY, 2015, EXPERT REV MOL DIAGN, V15, P1023, DOI 10.1586/14737159.2015.1053467
  14. Hong CS, 2016, GENOME MED, V8, DOI 10.1186/s13073-016-0336-6
  15. Hwang MY, 2015, GENOMICS, V105, P145, DOI 10.1016/j.ygeno.2014.12.003
  16. Iglesias A, 2014, GENET MED, V16, P922, DOI 10.1038/gim.2014.58
  17. Kadalayil L, 2015, BRIEF BIOINFORM, V16, P380, DOI 10.1093/bib/bbu027
  18. Kearney HM, 2011, CLIN LAB MED, V31, P595, DOI 10.1016/j.cll.2011.08.003
  19. Kearney HM, 2011, GENET MED, V13, P680, DOI 10.1097/GIM.0b013e3182217a3a
  20. Love MI, 2011, STAT APPL GENET MOL, V10, DOI 10.2202/1544-6115.1732
  21. Manning M, 2010, GENET MED, V12, P742, DOI 10.1097/GIM.0b013e3181f8baad
  22. Nam JY, 2016, BRIEF BIOINFORM, V17, P185, DOI 10.1093/bib/bbv055
  23. Plagnol V, 2012, BIOINFORMATICS, V28, P2747, DOI 10.1093/bioinformatics/bts526
  24. Samarakoon PS, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-661
  25. Sathirapongsasuti JF, 2011, BIOINFORMATICS, V27, P2648, DOI 10.1093/bioinformatics/btr462
  26. Sawyer SL, 2016, CLIN GENET, V89, P275, DOI 10.1111/cge.12654
  27. Stark Z, 2016, GENET MED, V18, P1090, DOI 10.1038/gim.2016.1
  28. Tan RJ, 2014, HUM MUTAT, V35, P899, DOI 10.1002/humu.22537
  29. Volk A, 2015, MOL SYNDROMOL, V6, P23, DOI 10.1159/000371598
  30. Zanardo EA, 2017, CLINICS, V72, P526, DOI 10.6061/clinics/2017(09)02
  31. Zhao M, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-46