The influence of topical anesthetic and fluorescein on non-contact tonometry measurements using ultra-high-speed dynamic Scheimpflug

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
HATANAKA, Marcelo
BARBOZA, Wilma Lelis
AMBROSIO, Renato
Citação
SCIENTIFIC REPORTS, v.13, n.1, article ID 17864, 7p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study aimed to investigate the effects of topical anesthetic and fluorescein drops on intraocular pressure (IOP), central corneal thickness (CCT) and biomechanical properties as measured by Corvis ST (CST-Oculus; Wezlar, Germany) in healthy eyes. A cross-sectional observational study was conducted on 46 healthy patients. The CST measurements were obtained before and immediately after the instillation of topical anesthetic and fluorescein drops. Pre-post instillation data were statistically analyzed. IOP measurements were compared to Goldmann's Applanation Tonometry (GAT), which was also performed after drops instillation. Biomechanical parameters analyzed included applanation 1 velocity, applanation 2 velocity, applanation 1 time, applanation 2 time, whole eye movement, deflection amplitude, and stiffness parameter at first applanation. A statistically significant difference in IOP, both for non-corrected IOP (IOPnct) and biomechanically corrected IOP (bIOP), was observed before and after the instillation of eyedrops. Despite this statistical significance, the observed difference lacked clinical relevance. The IOPnct demonstrated a significant difference pre and post-anesthetic and fluorescein instillation compared to GAT (14.99 +/- 2.27 mmHg pre-instillation and 14.62 +/- 2.50 mmHg post-instillation, versus 13.98 +/- 2.04 mmHg, with p-values of 0.0014 and 0.0490, respectively). Comparable findings were noted when justaposing bIOP to GAT (14.53 +/- 2.10 mmHg pre-instillation and 13.15 +/- 2.25 mmHg post-instillation, against 13.98 +/- 2.04 mmHg, with p-values of 0.0391 and 0.0022, respectively). Additionally, CCT measurements revealed a statistically significant elevation following the administration of topical anesthetic and fluorescein drops (from 544.64 +/- 39.85 mu m to 586.74 +/- 41.71 mu m, p < 0.01. None of the analyzed biomechanical parameters showed statistically significant differences after drops instillation. While the administration of topical anesthetic and fluorescein drops induced a statistically significant alteration in both IOPnct and bIOP readings, these changes were not clinically consequential. Furthermore, a notable statistical rise was observed in CCT measurements post-drops instillation, as determined by CST. Yet, corneal biomechanical parameters remained unaffected.
Palavras-chave
Referências
  1. Ambrósio R, 2013, REV BRAS OFTALMOL, V72, P99, DOI 10.1590/S0034-72802013000200005
  2. [Anonymous], 2017, BR J OPHTHALMOL, V101, P130, DOI [DOI 10.1136/BJOPHTHALMOL-2016-EGSGUIDELINE.003, 10.1136/bjophthalmol-2016-egsguideline.003]
  3. Arend N, 2014, OPHTHALMOLOGE, V111, P241, DOI 10.1007/s00347-013-2843-9
  4. Bak-Nielsen S, 2015, CORNEA, V34, P71, DOI 10.1097/ICO.0000000000000293
  5. Berdahl J., 2019, A new glaucoma vital sign-How corneal hysteresis is improving glaucoma patient management
  6. Brandt JD, 2007, CAN J OPHTHALMOL, V42, P562, DOI 10.3129/i07-095
  7. Brandt JD, 2001, OPHTHALMOLOGY, V108, P1779, DOI 10.1016/S0161-6420(01)00760-6
  8. Branislav H., 2019, J. Mech. Eng, V69, P111
  9. BRIGHT DC, 1981, AM J OPTOM PHYS OPT, V58, P1120
  10. Dana Dascalescu, 2015, Rom J Ophthalmol, V59, P252
  11. Dascalescu Dana, 2016, Rom J Ophthalmol, V60, P219
  12. De Moraes CGV, 2011, ARCH OPHTHALMOL-CHIC, V129, P562, DOI 10.1001/archophthalmol.2011.72
  13. Elsheikh A, 2013, J GLAUCOMA, V22, P156, DOI 10.1097/IJG.0b013e3182312010
  14. Elsheikh A, 2010, J REFRACT SURG, V26, P289, DOI 10.3928/1081597X-20090710-01
  15. Gaspar R, 2017, ARQ BRAS OFTALMOL, V80, P202
  16. Gelaw Y, 2012, BMC OPHTHALMOL, V12, DOI 10.1186/1471-2415-12-58
  17. GRANT WM, 1963, AM J OPHTHALMOL, V55, P1252, DOI 10.1016/0002-9394(63)90199-5
  18. HALES RH, 1967, AM J OPHTHALMOL, V64, P158, DOI 10.1016/0002-9394(67)93360-0
  19. Hong JX, 2013, INVEST OPHTH VIS SCI, V54, P659, DOI 10.1167/iovs.12-10984
  20. Joda AA, 2016, COMPUT METHOD BIOMEC, V19, P943, DOI 10.1080/10255842.2015.1077515
  21. Kaushik S, 2012, AM J OPHTHALMOL, V153, P840, DOI 10.1016/j.ajo.2011.10.032
  22. Kwon TH, 2010, J REFRACT SURG, V26, P512, DOI 10.3928/1081597X-20090814-02
  23. Leske MC, 2007, OPHTHALMOLOGY, V114, P1965, DOI 10.1016/j.ophtha.2007.03.016
  24. Liu J, 2005, J CATARACT REFR SURG, V31, P146, DOI 10.1016/j.jcrs.2004.09.031
  25. Luebke J, 2019, INT OPHTHALMOL, V39, P2517, DOI 10.1007/s10792-019-01098-5
  26. Mansouri K, 2012, AM J OPHTHALMOL, V153, P419, DOI 10.1016/j.ajo.2011.08.022
  27. Matsuura M, 2020, BRIT J OPHTHALMOL, V104, P563, DOI 10.1136/bjophthalmol-2019-314370
  28. Matsuura M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161742
  29. Medeiros F. A., VITAL SIGN
  30. MOSES RA, 1960, AM J OPHTHALMOL, V49, P1149
  31. Park K, 2018, BMC OPHTHALMOL, V18, DOI 10.1186/s12886-018-0673-x
  32. Pfeiffer N, 2007, OPHTHALMOLOGY, V114, P454, DOI 10.1016/j.ophtha.2006.07.039
  33. Quigley HA, 2006, BRIT J OPHTHALMOL, V90, P262, DOI 10.1136/bjo.2005.081224
  34. ROSENSTOCK T, 1981, AM J OPHTHALMOL, V92, P741, DOI 10.1016/S0002-9394(14)74684-7
  35. Schweitzer JA, 2018, CLIN OPHTHALMOL, V12, P1809, DOI 10.2147/OPTH.S168032
  36. Sedaghat MR, 2019, CLIN OPTOM, V11, P127, DOI 10.2147/OPTO.S220776
  37. Serbecic N, 2020, EUR J OPHTHALMOL, V30, P1287, DOI 10.1177/1120672119864554
  38. Susanna BN, 2019, OPHTHALMOLOGY, V126, P1640, DOI 10.1016/j.ophtha.2019.07.023
  39. Tham YC, 2014, OPHTHALMOLOGY, V121, P2081, DOI 10.1016/j.ophtha.2014.05.013
  40. Yaoeda K, 2018, CLIN OPHTHALMOL, V12, P1473, DOI 10.2147/OPTH.S174277
  41. Yaoeda K, 2016, CLIN OPHTHALMOL, V10, DOI 10.2147/OPTH.S106836