Stromal Cell Signature Associated with Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
VIEIRA, Rene Aloisio Costa
ANDRADE, Victor Piana
LIMA, Luiz Guilherme Cernaglia Aureliano
KERR, Ligia Maria
CAMPOS, Adriano Polpo de
PEREIRA, Carlos Alberto de Braganca
Citação
CELLS, v.8, n.12, article ID 1566, 16p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Breast cancer stromal compartment, may influence responsiveness to chemotherapy. Our aim was to detect a stromal cell signature (using a direct approach of microdissected stromal cells) associated with response to neoadjuvant chemotherapy (neoCT) in locally advanced breast cancer (LABC). The tumor samples were collected from 44 patients with LABC (29 estrogen receptor (ER) positive and 15 ER negative) before the start of any treatment. Neoadjuvant chemotherapy consisted of doxorubicin and cyclophosphamide, followed by paclitaxel. Response was defined as downstaging to maximum ypT1a-b/ypN0. The stromal cells, mainly composed of fibroblast and immune cells, were microdissected from fresh frozen tumor samples and gene expression profile was determined using Agilent SurePrint G3 Human Gene Expression microarrays. Expression levels were compared using MeV (MultiExperiment Viewer) software, applying SAM (significance analysis of microarrays). To classify samples according to tumor response, the order of median based on confidence statements (MedOr) was used, and to identify gene sets correlated with the phenotype downstaging, gene set enrichment analysis (GSEA). Nine patients presented disease downstaging. Eleven sequences (FDR 17) were differentially expressed, all of which (except H2AFJ) more expressed in responsive tumors, including PTCHD1 and genes involved in abnormal cytotoxic T cell physiology, TOX, LY75, and SH2D1A. The following four pairs of markers could correctly classify all tumor samples according to response: PTCHD1/PDXDC2P, LOC100506731/NEURL4, SH2D1A/ENST00000478672, and TOX/H2AFJ. Gene sets correlated with tumor downstaging (FDR < 0.01) were mainly involved in immune response or lymphocyte activation, including CD47, LCK, NCK1, CD24, CD3E, ZAP70, FOXP3, and CD74, among others. In locally advanced breast cancer, stromal cells may present specific features of immune response that may be associated with chemotherapy response.
Palavras-chave
breast cancer, stromal cells, gene expression, chemotherapy neoadjuvant
Referências
  1. Chang JC, 2003, LANCET, V362, P362, DOI 10.1016/S0140-6736(03)14023-8
  2. Chen J, 2009, NUCLEIC ACIDS RES, V37, pW305, DOI 10.1093/nar/gkp427
  3. Santos RPC, 2011, TUMOR BIOL, V32, P145, DOI 10.1007/s13277-010-0108-7
  4. DECAMPOS CP, 2016, ENTROPY-SWITZ, V18, DOI 10.3390/e18100357
  5. Dekker P, 2012, MECH AGEING DEV, V133, P498, DOI 10.1016/j.mad.2012.06.002
  6. Dekker TJA, 2015, MOL ONCOL, V9, P1120, DOI 10.1016/j.molonc.2015.02.001
  7. Denkert C, 2015, J CLIN ONCOL, V33, P983, DOI 10.1200/JCO.2014.58.1967
  8. Di Donato M, 2015, FRONT ENDOCRINOL, V5, DOI 10.3389/fendo.2014.00225
  9. Dittmer J, 2015, SEMIN CANCER BIOL, V31, P3, DOI 10.1016/j.semcancer.2014.05.006
  10. Doane AS, 2006, ONCOGENE, V25, P3994, DOI 10.1038/sj.onc.1209415
  11. Eryilmaz MK, 2018, J CANCER RES THER, V14, P619, DOI 10.4103/0973-1482.174550
  12. Farmer P, 2009, NAT MED, V15, P68, DOI 10.1038/nm.1908
  13. Fekete JT, 2019, INT J CANCER, V145, P3140, DOI 10.1002/ijc.32369
  14. Finak G, 2008, NAT MED, V14, P518, DOI 10.1038/nm1764
  15. Folgueira MAAK, 2005, CLIN CANCER RES, V11, P7434
  16. Gabrielson M, 2016, BREAST CANCER RES TR, V158, P253, DOI 10.1007/s10549-016-3877-x
  17. Garcia-Martinez E, 2014, BREAST CANCER RES, V16, DOI 10.1186/s13058-014-0488-5
  18. Giovannelli P, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00492
  19. JIANG WP, 1995, NATURE, V375, P151, DOI 10.1038/375151a0
  20. Kato M, 2006, INT IMMUNOL, V18, P857, DOI 10.1093/intimm/dxl022
  21. Kim CH, 2004, BLOOD, V104, P1952, DOI 10.1182/blood-2004-03-1206
  22. Marques F.P.C., 2014, OPEN J GENET, V4, P63, DOI [10.4236/ojgen.2014.41009, DOI 10.4236/OJGEN.2014.41009]
  23. McNamara KM, 2014, ENDOCR-RELAT CANCER, V21, pT161, DOI 10.1530/ERC-14-0243
  24. Nakasone ES, 2012, CANCER CELL, V21, P488, DOI 10.1016/j.ccr.2012.02.017
  25. Neville M.C., 1983, LACTATION PHYSL NUTR, P104
  26. Noor A, 2010, SCI TRANSL MED, V2, DOI 10.1126/scitranslmed.3001267
  27. Olive KP, 2009, SCIENCE, V324, P1457, DOI 10.1126/science.1171362
  28. Rozenchan PB, 2009, INT J CANCER, V125, P2767, DOI 10.1002/ijc.24646
  29. Scott AC, 2019, NATURE, V571, P270, DOI 10.1038/s41586-019-1324-y
  30. Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102
  31. Tozlu S, 2006, ENDOCR-RELAT CANCER, V13, P1109, DOI 10.1677/erc.1.01120
  32. Wang XJ, 2019, J CELL BIOCHEM, V120, P10351, DOI 10.1002/jcb.28319
  33. Yang F, 2006, ONCOGENE, V25, P1413, DOI 10.1038/sj.onc.1209165
  34. Yao J, 2006, CANCER RES, V66, P4065, DOI 10.1158/0008-5472.CAN-05-4083