Coronary artery disease grading by cardiac CT for predicting outcome in patients with stable angina

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
OEING, Christian U.
MATHESON, Matthew B.
OSTOVANEH, Mohammad R.
ROCHITTE, Carlos E.
CHEN, Marcus Y.
PIESKE, Burkert
KOFOED, Klaus F.
SCHUIJF, Joanne D.
NIINUMA, Hiroyuki
DEWEY, Marc
Citação
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, v.17, n.5, p.310-317, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The coronary atheroma burden drives major adverse cardiovascular events (MACE) in patients with suspected coronary heart disease (CHD). However, a consensus on how to grade disease burden for effective risk stratification is lacking. The purpose of this study was to compare the effectiveness of common CHD grading tools to risk stratify symptomatic patients. Methods: We analyzed the 5-year outcome of 381 prospectively enrolled patients in the CORE320 international, multicenter study using baseline clinical and cardiac computer-tomography (CT) imaging characteristics, including coronary artery calcium score (CACS), percent atheroma volume, ""high-risk"" plaque, disease severity grading using the CAD-RADS, and two simplified CAD staging systems. We applied Cox proportional hazard models and area under the curve (AUC) analysis to predict MACE or hard MACE, defined as death, myocardial infarction, or stroke. Analyses were stratified by a history of CHD. Additional forward selection analysis was performed to evaluate incremental value of metrics. Results: Clinical characteristics were the strongest predictors of MACE in the overall cohort. In patients without history of CHD, CACS remained the only independent predictor of MACE yielding an AUC of 73 (CI 67-79) vs. 64 (CI 57-70) for clinical characteristics. Noncalcified plaque volume did not add prognostic value. Simple CHD grading schemes yielded similar risk stratification as the CAD-RADS classification. Forward selection analysis confirmed prominent role of CACS and revealed usefulness of functional testing in subgroup with known CHD. Conclusion: In patients referred for invasive angiography, a history of CHD was the strongest predictor of MACE. In patients without history of CHD, a coronary calcium score yielded at least equal risk stratification vs. more complex CHD grading.
Palavras-chave
Coronary heart disease, Coronary atherosclerosis, Coronary imaging, CT, Angina
Referências
  1. AGATSTON AS, 1990, J AM COLL CARDIOL, V15, P827, DOI 10.1016/0735-1097(90)90282-T
  2. Arbab-Zadeh A, 2019, J AM COLL CARDIOL, V74, P1582, DOI 10.1016/j.jacc.2019.07.062
  3. Arbab-Zadeh A, 2016, J AM COLL CARDIOL, V68, P2467, DOI 10.1016/j.jacc.2016.08.069
  4. Arbab-Zadeh A, 2015, J AM COLL CARDIOL, V65, P846, DOI 10.1016/j.jacc.2014.11.041
  5. Bakhshi H, 2019, JACC-CARDIOVASC IMAG, V12, P1367, DOI 10.1016/j.jcmg.2018.05.019
  6. Cury RC, 2022, JACC-CARDIOVASC IMAG, V15, P1974, DOI 10.1016/j.jcmg.2022.07.002
  7. Cury RC, 2016, JACC-CARDIOVASC IMAG, V9, P1099, DOI 10.1016/j.jcmg.2016.05.005
  8. Dewey M, 2021, J CARDIOVASC COMPUT, V15, P485, DOI 10.1016/j.jcct.2021.04.005
  9. Ferraro R, 2020, J AM COLL CARDIOL, V76, P2252, DOI 10.1016/j.jacc.2020.08.078
  10. George RT, 2014, RADIOLOGY, V272, P407, DOI 10.1148/radiol.14140806
  11. Hadamitzky M, 2013, EUR HEART J, V34, P3277, DOI 10.1093/eurheartj/eht293
  12. Hadamitzky M, 2013, J AM COLL CARDIOL, V62, P468, DOI 10.1016/j.jacc.2013.04.064
  13. Hossain A, 2021, J CARDIOVASC COMPUT, V15, P268, DOI 10.1016/j.jcct.2020.09.007
  14. Kim U, 2018, JACC-CARDIOVASC IMAG, V11, P1461, DOI 10.1016/j.jcmg.2018.04.009
  15. Kishi S, 2020, INT J CARDIOVAS IMAG, V36, P2365, DOI 10.1007/s10554-020-01851-3
  16. Kishi S, 2016, J CARDIOVASC COMPUT, V10, P121, DOI 10.1016/j.jcct.2016.01.005
  17. Lo-Kioeng-Shioe MS, 2020, INT J CARDIOL, V299, P56, DOI 10.1016/j.ijcard.2019.06.003
  18. Lo-Kioeng-Shioe MS, 2019, J AM HEART ASSOC, V8, DOI 10.1161/JAHA.117.007201
  19. Morise A, 2007, HEART, V93, P200, DOI 10.1136/hrt.2006.093799
  20. Morise AP, 1997, AM J MED, V102, P350, DOI 10.1016/S0002-9343(97)00086-7
  21. Mortensen MB, 2020, J AM COLL CARDIOL, V76, P2803, DOI 10.1016/j.jacc.2020.10.021
  22. Newby DE, 2018, NEW ENGL J MED, V379, P924, DOI 10.1056/NEJMoa1805971
  23. Patel KK, 2022, CIRC-CARDIOVASC IMAG, V15, P252, DOI 10.1161/CIRCIMAGING.121.012599
  24. Reynolds HR, 2021, CIRCULATION, V144, P1024, DOI 10.1161/CIRCULATIONAHA.120.049755
  25. RUMBERGER JA, 1995, CIRCULATION, V92, P2157, DOI 10.1161/01.CIR.92.8.2157
  26. Rumberger JA, 2017, MAYO CLIN PROC, V92, P323, DOI 10.1016/j.mayocp.2017.01.009
  27. Villines TC, 2021, J CARDIOVASC COMPUT, V15, P180, DOI 10.1016/j.jcct.2021.02.004
  28. Winther S, 2022, J CARDIOVASC COMPUT, V16, P34, DOI 10.1016/j.jcct.2021.08.001
  29. Xie JX, 2018, JACC-CARDIOVASC IMAG, V11, P78, DOI 10.1016/j.jcmg.2017.08.026