Functional lymphatic reserve capacity is depressed in patients with a Fontan circulation

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
MOHANAKUMAR, Sheyanth
KELLY, Benjamin
ALSTRUP, Mathias
AMARAL, Fernando
MANSO, Paulo Henrique
Citação
PHYSIOLOGICAL REPORTS, v.9, n.11, article ID e14862, 15p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Lymphatic abnormalities play a role in effusions in individuals with a Fontan circulation. Recent results using near-infrared fluorescence imaging disclosed an increased contraction frequency of lymphatic vessels in Fontan patients compared to healthy controls. It is proposed that the elevated lymphatic pumping seen in the Fontan patients is necessary to maintain habitual interstitial fluid balance. Hyperthermia has previously been used as a tool for lymphatic stress test. By increasing fluid filtration in the capillary bed, the lymphatic workload and contraction frequency are increased accordingly. Using near-infrared fluorescence imaging, the lymphatic functional reserve capacity in Fontan patients were explored with a lymphatic stress test. Methods: Fontan patients (n = 33) were compared to a group of 15 healthy individuals of equal age, weight, and gender. The function of the superficial lymphatic vessels in the lower leg during rest and after inducing hyperthermia was investigated, using near-infrared fluorescence imaging. Results: Baseline values in the Fontan patients showed a 57% higher contraction frequency compared to the healthy controls (0.4 +/- 0.3 min-1 vs. 0.3 +/- 0.2 min(-1), p = 0.0445). After inducing stress on the lymphatic vessels with hyperthermia the ability to increase contraction frequency was decreased in the Fontan patients compared to the controls (0.6 +/- 0.5 min(-1) vs. 1.2 +/- 0.8 min(-1), p = 0.0102). Conclusions: Fontan patients had a higher lymphatic contraction frequency during normal circumstances. In the Fontan patients, the hyperthermia response is dampened indicating that the functional lymphatic reserve capacity is depressed. This diminished reserve capacity could be part of the explanation as to why some Fontan patients develop late-onset lymphatic complications.
Palavras-chave
Fontan circulation, lymphatic dysfunction, lymphatic reserve capacity, near-infrared fluorescence imaging
Referências
  1. Allen KY, 2017, AM J CARDIOL, V119, P1866, DOI 10.1016/j.amjcard.2017.03.004
  2. Bertram CD, 2011, J BIOMECH ENG-T ASME, V133, DOI 10.1115/1.4002799
  3. Biko DM, 2019, RADIOLOGY, V291, P774, DOI 10.1148/radiol.2019180877
  4. BRACE RA, 1990, AM J PHYSIOL, V258, pR240
  5. Breslin JW, 2019, COMPR PHYSIOL, V9, P207, DOI 10.1002/cphy.c180015
  6. Bridenbaugh Eric A, 2003, Lymphat Res Biol, V1, P147, DOI 10.1089/153968503321642633
  7. d'Udekem Y, 2018, J THORAC CARDIOV SUR, V155, P2067, DOI 10.1016/j.jtcvs.2018.01.026
  8. Davis MJ, 2011, AM J PHYSIOL-HEART C, V301, pH48, DOI 10.1152/ajpheart.00133.2011
  9. Dennis M, 2018, J AM COLL CARDIOL, V71, P1009, DOI 10.1016/j.jacc.2017.12.054
  10. Dori Y, 2014, PEDIATRICS, V134, pE590, DOI 10.1542/peds.2013-3723
  11. Dori Y, 2014, AM J ROENTGENOL, V203, P426, DOI 10.2214/AJR.13.11797
  12. EISENHOFFER J, 1995, MICROVASC RES, V49, P97, DOI 10.1006/mvre.1995.1008
  13. Gashev AA, 2004, MICROCIRCULATION, V11, P477, DOI 10.1080/10739680490476033
  14. Groenlund JH, 2017, LYMPHAT RES BIOL, V15, P227, DOI 10.1089/lrb.2016.0061
  15. Inai K, 2005, AM HEART J, V150, P588, DOI 10.1016/j.ahj.2004.10.030
  16. Jensen M.R., 1985, J APPL PHYSIOL, V114, P2013
  17. Kelly B, 2020, CURR CARDIOL REP, V22, DOI 10.1007/s11886-020-01405-y
  18. Kelly B, 2020, LYMPHAT RES BIOL, V18, P226, DOI 10.1089/lrb.2019.0041
  19. Kreutzer C, 2017, WORLD J PEDIATR CONG, V8, P613, DOI 10.1177/2150135117720685
  20. Krishnan US, 2009, CIRCULATION, V120, P1775, DOI 10.1161/CIRCULATIONAHA.109.854331
  21. Levick JR, 2010, CARDIOVASC RES, V87, P198, DOI 10.1093/cvr/cvq062
  22. Mohanakumar S., 2018, AM J PHYSIOL-HEART C, V211, pE681
  23. Mohanakumar S, 2019, CIRC-CARDIOVASC IMAG, V12, DOI 10.1161/CIRCIMAGING.118.008074
  24. Niedner MF, 2010, CONGENIT HEART DIS, V5, P243, DOI 10.1111/j.1747-0803.2010.00396.x
  25. Turquetto ALR, 2018, INT J CARDIOL, V271, P54, DOI 10.1016/j.ijcard.2018.05.096
  26. Rossitto G, 2020, J AM COLL CARDIOL, V76, P2817, DOI 10.1016/j.jacc.2020.10.022
  27. Rychik J, 2013, CARDIOL YOUNG, V23, P831, DOI 10.1017/S1047951113001650
  28. Savla JJ, 2017, J AM COLL CARDIOL, V69, P2410, DOI 10.1016/j.jacc.2017.03.021
  29. Scallan JP, 2013, J PHYSIOL-LONDON, V591, P443, DOI 10.1113/jphysiol.2012.237909
  30. Scallan JP, 2012, AM J PHYSIOL-HEART C, V303, pH809, DOI 10.1152/ajpheart.01098.2011
  31. Seeger M, 2009, RADIOLOGY, V252, P897, DOI 10.1148/radiol.2531082036
  32. Starling E H, 1896, J Physiol, V19, P312
  33. Stewart JM, 2003, CIRCULATION, V107, P2816, DOI 10.1161/01.CIR.0000070951.93566.FC
  34. Sung C, 2017, ECHOCARDIOGR-J CARD, V34, P1347, DOI 10.1111/echo.13639
  35. Tan IC, 2011, ARCH PHYS MED REHAB, V92, P756, DOI 10.1016/j.apmr.2010.12.027
  36. Tang WHW, 2003, CIRCULATION, V108, P2964, DOI 10.1161/01.CIR.0000106903.98196.B6
  37. Telinius N, 2014, AM J PHYSIOL-HEART C, V306, pH206, DOI 10.1152/ajpheart.00517.2013
  38. Telinius N, 2010, AM J PHYSIOL-HEART C, V299, pH811, DOI 10.1152/ajpheart.01089.2009
  39. Veldtman GR, 2017, CONGENIT HEART DIS, V12, P699, DOI 10.1111/chd.12526
  40. Zawieja David C., 2009, Lymphatic Research and Biology, V7, P87, DOI 10.1089/lrb.2009.0007