Tumor-Derived Extracellular Vesicles: Modulation of Cellular Functional Dynamics in Tumor Microenvironment and Its Clinical Implications

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, v.9, article ID 737449, 9p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cancer can be described as a dynamic disease formed by malignant and stromal cells. The cellular interaction between these components in the tumor microenvironment (TME) dictates the development of the disease and can be mediated by extracellular vesicles secreted by tumor cells (TEVs). In this review, we summarize emerging findings about how TEVs modify important aspects of the disease like continuous tumor growth, induction of angiogenesis and metastasis establishment. We also discuss how these nanostructures can educate the immune infiltrating cells to generate an immunosuppressive environment that favors tumor progression. Furthermore, we offer our perspective on the path TEVs interfere in cancer treatment response and promote tumor recurrence, highlighting the need to understand the underlying mechanisms controlling TEVs secretion and cargo sorting. In addition, we discuss the clinical potential of TEVs as markers of cell state transitions including the acquisition of a treatment-resistant phenotype, and their potential as therapeutic targets for interventions such as the use of extracellular vesicle (EV) inhibitors to block their pro-tumoral activities. Some of the technical challenges for TEVs research and clinical use are also presented.</p>
Palavras-chave
extracellular vesicles, tumor microenvironment, cell communication, tumor progression, functional dynamics
Referências
  1. Anand S, 2019, BBA-PROTEINS PROTEOM, V1867, DOI 10.1016/j.bbapap.2019.02.005
  2. Aslan C, 2019, J CELL PHYSIOL, V234, P16885, DOI 10.1002/jcp.28374
  3. Bai M, 2019, MOL THER, V27, P1772, DOI 10.1016/j.ymthe.2019.06.018
  4. Bandari SK, 2018, MATRIX BIOL, V65, P104, DOI 10.1016/j.matbio.2017.09.001
  5. Bebawy M, 2009, LEUKEMIA, V23, P1643, DOI 10.1038/leu.2009.76
  6. Bestard-Escalas J, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22105060
  7. Biagioni A, 2021, CELL MOL LIFE SCI, V78, P3057, DOI 10.1007/s00018-020-03707-4
  8. Cai S, 2017, INT J BIOL SCI, V13, P1287, DOI 10.7150/ijbs.18890
  9. Chen G, 2018, NATURE, V560, P382, DOI 10.1038/s41586-018-0392-8
  10. Chen X, 2018, CANCER LETT, V435, P80, DOI 10.1016/j.canlet.2018.08.001
  11. Claude-Taupin A, 2018, SEMIN CELL DEV BIOL, V83, P36, DOI 10.1016/j.semcdb.2018.03.012
  12. Corcoran C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050999
  13. Costa-Silva B, 2015, NAT CELL BIOL, V17, P816, DOI 10.1038/ncb3169
  14. Dai E., 2020, AUTOPHAGY, V16, P2069, DOI [DOI 10.1080/15548627.2020.1714209, 10.1080/15548627.2020.1714209]
  15. Dai J, 2020, SIGNAL TRANSDUCT TAR, V5, DOI 10.1038/s41392-020-00261-0
  16. Dai JL, 2019, J EXP MED, V216, P2883, DOI 10.1084/jem.20190158
  17. Andrade LND, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-50848-z
  18. Dorayappan KDP, 2018, ONCOGENE, V37, P3806, DOI 10.1038/s41388-018-0189-0
  19. Dutta S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097580
  20. Fan JQ, 2020, CLIN SCI, V134, P807, DOI 10.1042/CS20200039
  21. Fang T, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02583-0
  22. Fitzgerald W, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27190-x
  23. FOLKMAN J, 1975, ANN INTERN MED, V82, P96, DOI 10.7326/0003-4819-82-1-96
  24. Fong MY, 2015, NAT CELL BIOL, V17, P183, DOI 10.1038/ncb3094
  25. Fonseka P, 2019, J EXTRACELL VESICLES, V8, DOI 10.1080/20013078.2019.1597614
  26. Galluzzi L, 2017, EMBO J, V36, P1811, DOI 10.15252/embj.201796697
  27. Guo XF, 2018, ONCOGENE, V37, P4239, DOI 10.1038/s41388-018-0261-9
  28. Han ML, 2020, CELL DEATH DIS, V11, DOI 10.1038/s41419-020-2250-5
  29. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  30. He LQ, 2019, THERANOSTICS, V9, P8206, DOI 10.7150/thno.37455
  31. Hessvik NP, 2016, CELL MOL LIFE SCI, V73, P4717, DOI 10.1007/s00018-016-2309-8
  32. Horie K, 2017, BIOCHEM BIOPH RES CO, V492, P356, DOI 10.1016/j.bbrc.2017.08.107
  33. Hoshino A, 2020, CELL, V182, P1044, DOI 10.1016/j.cell.2020.07.009
  34. Hsieh CH, 2018, NEOPLASIA, V20, P775, DOI 10.1016/j.neo.2018.06.004
  35. Huang Z, 2017, ONCOL RES, V25, P651, DOI 10.3727/096504016X14752792816791
  36. Ji Q, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-14869-x
  37. Jiang MJ, 2020, MOL CANCER, V19, DOI 10.1186/s12943-020-01178-6
  38. Kalra H, 2019, J EXTRACELL VESICLES, V8, DOI 10.1080/20013078.2019.1690217
  39. Kamerkar S, 2017, NATURE, V546, P498, DOI 10.1038/nature22341
  40. Keklikoglou I, 2019, NAT CELL BIOL, V21, P190, DOI 10.1038/s41556-018-0256-3
  41. Khan S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046737
  42. Kilinc S, 2021, DEV CELL, V56, P1989, DOI 10.1016/j.devcel.2021.05.014
  43. Kim DH, 2019, EXP MOL MED, V51, DOI 10.1038/s12276-019-0295-2
  44. Kim MS, 2016, NANOMED-NANOTECHNOL, V12, P655, DOI 10.1016/j.nano.2015.10.012
  45. Ko SY, 2019, COMMUN BIOL, V2, DOI 10.1038/s42003-019-0609-x
  46. Kreger BT, 2016, CANCERS, V8, DOI 10.3390/cancers8120111
  47. Lazaro-Ibanez E, 2019, J EXTRACELL VESICLES, V8, DOI 10.1080/20013078.2019.1656993
  48. LeBleu VS, 2020, TRENDS CANCER, V6, P767, DOI 10.1016/j.trecan.2020.03.007
  49. Liang ZX, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-019-2077-0
  50. Liu QY, 2018, CANCER BIOMARK, V22, P267, DOI 10.3233/CBM-170955
  51. Lunavat TR, 2017, P NATL ACAD SCI USA, V114, pE5930, DOI 10.1073/pnas.1705206114
  52. Ma YZ, 2019, INT J NANOMED, V14, P8121, DOI 10.2147/IJN.S221383
  53. Marconi S, 2021, MEMBRANES-BASEL, V11, DOI 10.3390/membranes11030199
  54. Matsumoto Y, 2016, ONCOL REP, V36, P2535, DOI 10.3892/or.2016.5066
  55. Mrowczynski Oliver D, 2018, Oncotarget, V9, P36083, DOI 10.18632/oncotarget.26300
  56. Murrow L, 2015, NAT CELL BIOL, V17, P300, DOI 10.1038/ncb3112
  57. O'Brien K, 2020, NAT REV MOL CELL BIO, V21, P585, DOI 10.1038/s41580-020-0251-y
  58. Osti D, 2019, CLIN CANCER RES, V25, P266, DOI 10.1158/1078-0432.CCR-18-1941
  59. Park JE, 2019, ONCOGENE, V38, P5158, DOI 10.1038/s41388-019-0782-x
  60. Pathan M, 2019, NUCLEIC ACIDS RES, V47, pD516, DOI 10.1093/nar/gky1029
  61. Pelham CJ, 2020, SEMIN CANCER BIOL, V63, P11, DOI 10.1016/j.semcancer.2019.07.008
  62. Qi HZ, 2016, ACS NANO, V10, P3323, DOI 10.1021/acsnano.5b06939
  63. Qian MY, 2020, ONCOGENE, V39, P428, DOI 10.1038/s41388-019-0996-y
  64. Quail DF, 2013, NAT MED, V19, P1423, DOI 10.1038/nm.3394
  65. Rak J, 2020, NAT CELL BIOL, V22, P137, DOI 10.1038/s41556-020-0466-3
  66. Ramteke A, 2015, MOL CARCINOGEN, V54, P554, DOI 10.1002/mc.22124
  67. Raposo G, 2019, NAT REV MOL CELL BIO, V20, P509, DOI 10.1038/s41580-019-0158-7
  68. Ricklefs FL, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aar2766
  69. Sato S, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.132447
  70. Schubert A, 2021, MOL ONCOL, V15, P3, DOI 10.1002/1878-0261.12855
  71. Shang D, 2020, J CELL MOL MED, V24, P588, DOI 10.1111/jcmm.14766
  72. Sharma P, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-56542-4
  73. Srivastava A, 2016, SCI REP-UK, V6, DOI 10.1038/srep38541
  74. Tang MKS, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-04695-7
  75. Thorburn J, 2009, CELL DEATH DIFFER, V16, P175, DOI 10.1038/cdd.2008.143
  76. Tkach M, 2016, CELL, V164, P1226, DOI 10.1016/j.cell.2016.01.043
  77. Treps L, 2017, J EXTRACELL VESICLES, V6, DOI 10.1080/20013078.2017.1359479
  78. van Niel G, 2018, NAT REV MOL CELL BIO, V19, P213, DOI 10.1038/nrm.2017.125
  79. Vella LJ, 2017, NEOPLASIA, V19, P932, DOI 10.1016/j.neo.2017.07.002
  80. Wang XF, 2018, CANCER RES, V78, P4586, DOI 10.1158/0008-5472.CAN-17-3841
  81. Wang ZF, 2019, J EXP CLIN CANC RES, V38, DOI 10.1186/s13046-019-1181-4
  82. Xie Y, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.00982
  83. Xu J, 2018, J CELL SCI, V131, DOI 10.1242/jcs.215210
  84. Xu R, 2018, NAT REV CLIN ONCOL, V15, P617, DOI 10.1038/s41571-018-0036-9
  85. Xu ZL, 2019, ONCOL LETT, V18, P4082, DOI 10.3892/ol.2019.10740
  86. Yanez-Mo M, 2015, J EXTRACELL VESICLES, V4, DOI 10.3402/jev.v4.27066
  87. Yang HO, 2018, MOL THER, V26, P2466, DOI 10.1016/j.ymthe.2018.07.023
  88. Ye LS, 2018, J IMMUNOTHER CANCER, V6, DOI 10.1186/s40425-018-0451-6
  89. Zeng ZC, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07810-w
  90. Zhang HR, 2020, J ENZYM INHIB MED CH, V35, P1322, DOI 10.1080/14756366.2020.1754814
  91. Zhao SL, 2020, J HEMATOL ONCOL, V13, DOI 10.1186/s13045-020-00991-2
  92. Zhou XC, 2018, J EXP CLIN CANC RES, V37, DOI 10.1186/s13046-018-0911-3
  93. Zhu Xiao, 2021, Biomed Pharmacother, V133, P111016, DOI 10.1016/j.biopha.2020.111016