Transcriptomic analysis reveals a tissue-specific loss of identity during ageing and cancer

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
CHATSIRISUPACHAI, Kasit
AVELAR, Roberto A.
MAGALHAES, Joao Pedro de
Citação
BMC GENOMICS, v.24, n.1, article ID 644, 13p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
IntroductionUnderstanding changes in cell identity in cancer and ageing is of great importance. In this work, we analyzed how gene expression changes in human tissues are associated with tissue specificity during cancer and ageing using transcriptome data from TCGA and GTEx.ResultsWe found significant downregulation of tissue-specific genes during ageing in 40% of the tissues analyzed, which suggests loss of tissue identity with age. For most cancer types, we have noted a consistent pattern of downregulation in genes that are specific to the tissue from which the tumor originated. Moreover, we observed in cancer an activation of genes not usually expressed in the tissue of origin as well as an upregulation of genes specific to other tissues. These patterns in cancer were associated with patient survival. The age of the patient, however, did not influence these patterns.ConclusionWe identified loss of cellular identity in 40% of the tissues analysed during human ageing, and a clear pattern in cancer, where during tumorigenesis cells express genes specific to other organs while suppressing the expression of genes from their original tissue. The loss of cellular identity observed in cancer is associated with prognosis and is not influenced by age, suggesting that it is a crucial stage in carcinogenesis.
Palavras-chave
Functional genomics, Geriatric oncology, Geroscience, Oncogenomics
Referências
  1. Aguet F, 2020, SCIENCE, V369, P1318, DOI 10.1126/science.aaz1776
  2. Anisimova AS, 2020, P NATL ACAD SCI USA, V117, P15581, DOI 10.1073/pnas.2001788117
  3. Benayoun BA, 2015, NAT REV MOL CELL BIO, V16, P593, DOI 10.1038/nrm4048
  4. Bianchi JJ, 2020, CURR OPIN CELL BIOL, V63, P135, DOI 10.1016/j.ceb.2020.01.005
  5. Chatsirisupachai K, 2022, Trends Cancer
  6. Chatsirisupachai K, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22560-y
  7. Chatsirisupachai K, 2019, AGING CELL, V18, DOI 10.1111/acel.13041
  8. Chen Yunshun, 2016, F1000Res, V5, P1438, DOI 10.12688/f1000research.8987.2
  9. Chughtai B, 2016, NAT REV DIS PRIMERS, V2, DOI 10.1038/nrdp.2016.31
  10. Anna CDS, 2018, CLIN EXP MED, V18, P457, DOI 10.1007/s10238-018-0518-1
  11. de Magalhaes JP, 2023, GENOME BIOL, V24, DOI 10.1186/s13059-023-02888-y
  12. de Magalhaes JP, 2013, NAT REV CANCER, V13, P357, DOI 10.1038/nrc3497
  13. Divate M, 2022, CANCERS, V14, DOI 10.3390/cancers14051185
  14. Dönertas HM, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05927-4
  15. Durinck S, 2009, NAT PROTOC, V4, P1184, DOI 10.1038/nprot.2009.97
  16. Fang H, 2010, DEV CELL, V19, P174, DOI 10.1016/j.devcel.2010.06.014
  17. Ferreira PG, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02772-x
  18. Friedmann-Morvinski D, 2014, EMBO REP, V15, P244, DOI 10.1002/embr.201338254
  19. Haigis KM, 2019, SCIENCE, V363, P1150, DOI 10.1126/science.aaw3472
  20. Hanahan D, 2022, CANCER DISCOV, V12, P31, DOI 10.1158/2159-8290.CD-21-1059
  21. Henry NL, 2012, MOL ONCOL, V6, P140, DOI 10.1016/j.molonc.2012.01.010
  22. Hnisz D, 2013, CELL, V155, P934, DOI 10.1016/j.cell.2013.09.053
  23. Horvath S, 2018, NAT REV GENET, V19, P371, DOI 10.1038/s41576-018-0004-3
  24. Hou YJ, 2019, NAT REV NEUROL, V15, P565, DOI 10.1038/s41582-019-0244-7
  25. Hu WX, 2017, ONCOTARGET, V8, P6809, DOI 10.18632/oncotarget.14303
  26. Izgi H, 2022, Elife, P11
  27. Kim P, 2018, NUCLEIC ACIDS RES, V46, pD1031, DOI 10.1093/nar/gkx850
  28. Kimmel JC, 2019, GENOME RES, V29, P2088, DOI 10.1101/gr.253880.119
  29. Köhler C, 2017, CELL STEM CELL, V21, P679, DOI 10.1016/j.stem.2017.08.003
  30. Larsson L, 2019, PHYSIOL REV, V99, P427, DOI 10.1152/physrev.00061.2017
  31. Law Charity W, 2016, F1000Res, V5, DOI 10.12688/f1000research.9005.3
  32. Law CW, 2014, GENOME BIOL, V15, DOI 10.1186/gb-2014-15-2-r29
  33. Lee W, 2021, CELL REP, V37, DOI 10.1016/j.celrep.2021.110005
  34. Li CH, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-021-27889-y
  35. Liang S, 2006, PHYSIOL GENOMICS, V26, P158, DOI 10.1152/physiolgenomics.00313.2005
  36. Liao YX, 2019, NUCLEIC ACIDS RES, V47, pW199, DOI 10.1093/nar/gkz401
  37. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  38. Lüleci HB, 2022, BIODATA MIN, V15, DOI 10.1186/s13040-022-00315-9
  39. Malta TM, 2018, CELL, V173, P338, DOI 10.1016/j.cell.2018.03.034
  40. McCarthy DJ, 2012, NUCLEIC ACIDS RES, V40, P4288, DOI 10.1093/nar/gks042
  41. Mounir M, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1006701
  42. N X. G W L S. Grex, 2019, gene ID mapping for genotype-tissue expression (GTEx) data
  43. Palmer D, 2021, AGING-US, V13, P3313, DOI 10.18632/aging.202648
  44. Pei GS, 2019, BIOINFORMATICS, V35, P3842, DOI 10.1093/bioinformatics/btz138
  45. Perekatt AO, 2018, CANCER RES, V78, P4878, DOI 10.1158/0008-5472.CAN-18-0043
  46. Phipson B, 2016, ANN APPL STAT, V10, P946, DOI 10.1214/16-AOAS920
  47. Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007
  48. Robinson MD, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-3-r25
  49. Robinson MD, 2010, BIOINFORMATICS, V26, P139, DOI 10.1093/bioinformatics/btp616
  50. Ryaboshapkinad M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43829-9
  51. Saghafinia S, 2021, CANCER DISCOV, V11, P2638, DOI 10.1158/2159-8290.CD-20-1637
  52. Sagi D, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006264
  53. Schaefer MH, 2016, SCI REP-UK, V6, DOI 10.1038/srep20707
  54. Shah Y, 2021, CELL REP, V37, DOI 10.1016/j.celrep.2021.110100
  55. Silva AS, 2011, BIOINFORMATICS, V27, P3300, DOI 10.1093/bioinformatics/btr559
  56. Sul JY, 2009, P NATL ACAD SCI USA, V106, P7624, DOI 10.1073/pnas.0902161106
  57. Tang Q, 2019, BRIEF BIOINFORM, V20, P1322, DOI 10.1093/bib/bbx173
  58. Tang ZF, 2019, NUCLEIC ACIDS RES, V47, pW556, DOI 10.1093/nar/gkz430
  59. Teschendorff AE, 2013, HUM MOL GENET, V22, pR7, DOI 10.1093/hmg/ddt375
  60. Uhlen M, 2015, SCIENCE, V347, DOI 10.1126/science.1260419
  61. Uyar B, 2020, AGEING RES REV, V64, DOI 10.1016/j.arr.2020.101156
  62. Xiao SJ, 2010, BIOINFORMATICS, V26, P1273, DOI 10.1093/bioinformatics/btq109
  63. Xu QH, 2016, MODERN PATHOL, V29, P546, DOI 10.1038/modpathol.2016.60
  64. Yang JH, 2023, CELL, V186, P305, DOI 10.1016/j.cell.2022.12.027
  65. Yao JJ, 2021, ARCH PATHOL LAB MED, V145, P692, DOI 10.5858/arpa.2020-0513-RA
  66. Yuan S, 2019, CANCER DISCOV, V9, P837, DOI 10.1158/2159-8290.CD-19-0015