Directional Topography Influences Adipose Mesenchymal Stromal Cell Plasticity: Prospects for Tissue Engineering and Fibrosis

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorLIGUORI, Gabriel Romero
dc.contributor.authorZHOU, Qihui
dc.contributor.authorLIGUORI, Tacia Tavares Aquinas
dc.contributor.authorBARROS, Guilherme Garcia
dc.contributor.authorKUHN, Philipp Till
dc.contributor.authorMOREIRA, Luiz Felipe Pinho
dc.contributor.authorRIJN, Patrick van
dc.contributor.authorHARMSEN, Martin C.
dc.date.accessioned2019-06-26T17:28:30Z
dc.date.available2019-06-26T17:28:30Z
dc.date.issued2019
dc.description.abstractIntroduction. Progenitor cells cultured on biomaterials with optimal physical-topographical properties respond with alignment and differentiation. Stromal cells from connective tissue can adversely differentiate to profibrotic myofibroblasts or favorably to smooth muscle cells (SMC). We hypothesized that myogenic differentiation of adipose tissue-derived stromal cells (ASC) depends on gradient directional topographic features. Methods. Polydimethylsiloxane (PDMS) samples with nanometer and micrometer directional topography gradients (wavelength49-3, 425nm) were fabricated. ASC were cultured on patterned PDMS and stimulated with TGF-1 to induce myogenic differentiation. Cellular alignment and adhesion were assessed by immunofluorescence microscopy after 24h. After seven days, myogenic differentiation was examined by immunofluorescence microscopy, gene expression, and immunoblotting. Results. Cell alignment occurred on topographies larger than w=1758nm/a=630nm. The number and total area of focal adhesions per cell were reduced on topographies from w=562nm/a=96nm to w=3919nm/a=1430nm. Focal adhesion alignment was increased on topographies larger than w=731nm/a=146nm. Less myogenic differentiation of ASC occurred on topographies smaller than w=784nm/a=209nm. Conclusion. ASC adherence, alignment, and differentiation are directed by topographical cues. Our evidence highlights a minimal topographic environment required to facilitate the development of aligned and differentiated cell layers from ASC. These data suggest that nanotopography may be a novel tool for inhibiting fibrosis.eng
dc.description.indexPubMedeng
dc.description.sponsorshipUniversity Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
dc.description.sponsorshipNWO-ZonMw Medium Investment Grant [40-00506-98-9021]
dc.description.sponsorshipChina Scholarship Council [201406630003]
dc.identifier.citationSTEM CELLS INTERNATIONAL, article ID 5387850, 14p, 2019
dc.identifier.doi10.1155/2019/5387850
dc.identifier.eissn1687-9678
dc.identifier.issn1687-966X
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/32446
dc.language.isoeng
dc.publisherHINDAWI LTDeng
dc.relation.ispartofStem Cells International
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright HINDAWI LTDeng
dc.subject.wosCell & Tissue Engineeringeng
dc.titleDirectional Topography Influences Adipose Mesenchymal Stromal Cell Plasticity: Prospects for Tissue Engineering and Fibrosiseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countryHolanda
hcfmusp.affiliation.countryChina
hcfmusp.affiliation.countryisocn
hcfmusp.affiliation.countryisonl
hcfmusp.author.externalZHOU, Qihui:Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn FB40, WJ Kolff Inst Biomed Engn & Mat Sci FB41, A Deusinglaan 1, NL-9713 AV Groningen, Netherlands; Qingdao Univ, Inst Translat Med, State Key Lab Biofibers & Ecotext, Qingdao 266021, Shandong, Peoples R China
hcfmusp.author.externalLIGUORI, Tacia Tavares Aquinas:Univ Groningen, Univ Med Ctr Groningen, Dept Pathol & Med Biol, Groningen, Netherlands; Univ Sao Paulo, Lab Cirurgia Cardiovasc & Fisiopatol Circulacao L, Inst Coracao InCor, Hosp Clin HCFMUSP,Fac Med, Sao Paulo, SP, Brazil
hcfmusp.author.externalKUHN, Philipp Till:Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn FB40, WJ Kolff Inst Biomed Engn & Mat Sci FB41, A Deusinglaan 1, NL-9713 AV Groningen, Netherlands
hcfmusp.author.externalRIJN, Patrick van:Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn FB40, WJ Kolff Inst Biomed Engn & Mat Sci FB41, A Deusinglaan 1, NL-9713 AV Groningen, Netherlands
hcfmusp.author.externalHARMSEN, Martin C.:Univ Groningen, Univ Med Ctr Groningen, Dept Pathol & Med Biol, Groningen, Netherlands
hcfmusp.citation.scopus28
hcfmusp.contributor.author-fmusphcGABRIEL ROMERO LIGUORI
hcfmusp.contributor.author-fmusphcGUILHERME GARCIA BARROS
hcfmusp.contributor.author-fmusphcLUIZ FELIPE PINHO MOREIRA
hcfmusp.description.articlenumber5387850
hcfmusp.origemWOS
hcfmusp.origem.pubmed31191675
hcfmusp.origem.scopus2-s2.0-85070672799
hcfmusp.origem.wosWOS:000468529100001
hcfmusp.publisher.cityLONDONeng
hcfmusp.publisher.countryENGLANDeng
hcfmusp.relation.referenceAbagnale G, 2015, BIOMATERIALS, V61, P316, DOI 10.1016/j.biomaterials.2015.05.030eng
hcfmusp.relation.referenceAguilar E, 2014, STEM CELLS DEV, V23, P2908, DOI 10.1089/scd.2014.0231eng
hcfmusp.relation.referenceAji K, 2016, STEM CELLS INT, DOI 10.1155/2016/1267480eng
hcfmusp.relation.referenceLiguori TTA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34747-3eng
hcfmusp.relation.referenceAu P, 2008, BLOOD, V111, P4551, DOI 10.1182/blood-2007-10-118273eng
hcfmusp.relation.referenceBajek A, 2016, ARCH IMMUNOL THER EX, V64, P443, DOI 10.1007/s00005-016-0394-xeng
hcfmusp.relation.referenceBerginski M. E., 2013, F1000RESEARCH, V2, DOI [10.3410/f1000research.2-68.v1, DOI 10.3410/F1000RESEARCH.2-68.V1]eng
hcfmusp.relation.referenceBiernacka A, 2011, GROWTH FACTORS, V29, P196, DOI 10.3109/08977194.2011.595714eng
hcfmusp.relation.referenceBoroujeni SM, 2016, J BIOMED MATER RES A, V104, P1610, DOI 10.1002/jbm.a.35686eng
hcfmusp.relation.referenceBrohem CA, 2013, INT J COSMETIC SCI, V35, P448, DOI 10.1111/ics.12064eng
hcfmusp.relation.referenceCharest JL, 2006, BIOMATERIALS, V27, P2487, DOI 10.1016/j.biomaterials.2005.11.022eng
hcfmusp.relation.referenceDan P, 2015, J CELL SCI, V128, P2415, DOI 10.1242/jcs.167783eng
hcfmusp.relation.referenceDang JM, 2007, ADV MATER, V19, P2775, DOI 10.1002/adma.200602159eng
hcfmusp.relation.referenceDenu RA, 2016, ACTA HAEMATOL-BASEL, V136, P85, DOI 10.1159/000445096eng
hcfmusp.relation.referenceDobaczewski M, 2011, J MOL CELL CARDIOL, V51, P600, DOI 10.1016/j.yjmcc.2010.10.033eng
hcfmusp.relation.referenceGautrot JE, 2014, NANO LETT, V14, P3945, DOI 10.1021/nl501248yeng
hcfmusp.relation.referenceGoffin JM, 2006, J CELL BIOL, V172, P259, DOI 10.1083/jcb.200506179eng
hcfmusp.relation.referenceGong ZD, 2011, METHODS MOL BIOL, V698, P279, DOI 10.1007/978-1-60761-999-4_21eng
hcfmusp.relation.referenceGong Z, 2009, TISSUE ENG PT A, V15, P319, DOI 10.1089/ten.tea.2008.0161eng
hcfmusp.relation.referenceGu WD, 2018, J BIOL CHEM, V293, P8089, DOI 10.1074/jbc.RA118.001739eng
hcfmusp.relation.referenceHajmousa G, 2016, STEM CELLS DEV, V25, P1444, DOI 10.1089/scd.2016.0025eng
hcfmusp.relation.referenceHaniffa MA, 2009, HAEMATOL-HEMATOL J, V94, P258, DOI 10.3324/haematol.13699eng
hcfmusp.relation.referenceHARRIS L, 2002, THE JOURNAL OF SURGI, V168, P306, DOI 10.1016/J.JSS.2009.08.001eng
hcfmusp.relation.referenceHematti P, 2012, CYTOTHERAPY, V14, P516, DOI 10.3109/14653249.2012.677822eng
hcfmusp.relation.referenceHuang GS, 2015, BIOMATERIALS, V65, P154, DOI 10.1016/j.biomaterials.2015.07.003eng
hcfmusp.relation.referenceKulangara K, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114698eng
hcfmusp.relation.referenceKulangara K, 2012, BIOMATERIALS, V33, P4998, DOI 10.1016/j.biomaterials.2012.03.053eng
hcfmusp.relation.referenceLeask A, 2007, CARDIOVASC RES, V74, P207, DOI 10.1016/j.cardiores.2006.07.012eng
hcfmusp.relation.referenceLi JG, 2016, COLLOID SURFACE B, V145, P410, DOI 10.1016/j.colsurfb.2016.05.024eng
hcfmusp.relation.referenceLi Z, 2013, BIOMATERIALS, V34, P7616, DOI 10.1016/j.biomaterials.2013.06.059eng
hcfmusp.relation.referenceLin SG, 2017, ACTA BIOMATER, V59, P200, DOI 10.1016/j.actbio.2017.07.012eng
hcfmusp.relation.referenceMajd H, 2015, BIOMATERIALS, V54, P136, DOI 10.1016/j.biomaterials.2015.03.027eng
hcfmusp.relation.referenceMathieu PS, 2012, TISSUE ENG PART B-RE, V18, P436, DOI [10.1089/ten.TEB.2012.0014, 10.1089/ten.teb.2012.0014]eng
hcfmusp.relation.referenceMcCloy RA, 2014, CELL CYCLE, V13, P1400, DOI 10.4161/cc.28401eng
hcfmusp.relation.referenceMcNamara LE, 2010, J TISSUE ENG, V1, DOI 10.4061/2010/120623eng
hcfmusp.relation.referenceMushahary D, 2018, CYTOM PART A, V93A, P19, DOI 10.1002/cyto.a.23242eng
hcfmusp.relation.referenceNewman P, 2016, SCI REP-UK, V6, DOI 10.1038/srep37909eng
hcfmusp.relation.referenceOedayrajsingh-Varma MJ, 2006, CYTOTHERAPY, V8, P166, DOI 10.1080/14653240600621125eng
hcfmusp.relation.referenceParandakh A, 2018, IN VITRO CELL DEV-AN, V54, P677, DOI 10.1007/s11626-018-0289-8eng
hcfmusp.relation.referencePARK I, 2002, JOURNAL OF BIOMATERI, V23, P1579, DOI 10.1163/092050611X587538eng
hcfmusp.relation.referencePARK J, 2002, BIOTECHNOLOGY AND BI, V88, P359, DOI 10.1002/BIT.20250eng
hcfmusp.relation.referenceParvizi M, 2016, BIOTECHNOL J, V11, P932, DOI 10.1002/biot.201500519eng
hcfmusp.relation.referencePiersma B, 2015, FRONT MED, V2, DOI 10.3389/fmed.2015.00059eng
hcfmusp.relation.referencePohlers D, 2009, BBA-MOL BASIS DIS, V1792, P746, DOI 10.1016/j.bbadis.2009.06.004eng
hcfmusp.relation.referenceRiha GM, 2005, TISSUE ENG, V11, P1535, DOI 10.1089/ten.2005.11.1535eng
hcfmusp.relation.referenceSteward AJ, 2015, J ANAT, V227, P717, DOI 10.1111/joa.12243eng
hcfmusp.relation.referenceTeo BKK, 2013, ACS NANO, V7, P4785, DOI 10.1021/nn304966zeng
hcfmusp.relation.referenceWang PY, 2012, J MATER SCI-MATER M, V23, P3015, DOI 10.1007/s10856-012-4748-6eng
hcfmusp.relation.referenceWANG Z, 2002, METHODS, V19, P538, DOI 10.1089/TEN.TEC.2012.0472eng
hcfmusp.relation.referenceYao R, 2015, J BIOMECH ENG-T ASME, V137, DOI 10.1115/1.4029255eng
hcfmusp.relation.referenceYim EKF, 2007, EXP CELL RES, V313, P1820, DOI 10.1016/j.yexcr.2007.02.031eng
hcfmusp.relation.referenceYin Z, 2010, BIOMATERIALS, V31, P2163, DOI 10.1016/j.biomaterials.2009.11.083eng
hcfmusp.relation.referenceZhang XQ, 2017, BIOMATERIALS, V145, P9, DOI 10.1016/j.biomaterials.2017.08.028eng
hcfmusp.relation.referenceZhou QH, 2017, ACS APPL MATER INTER, V9, P31433, DOI 10.1021/acsami.7b08237eng
hcfmusp.relation.referenceZhou QH, 2016, ADV MATER INTERFACES, V3, DOI 10.1002/admi.201600275eng
hcfmusp.relation.referenceZhou QH, 2015, SCI REP-UK, V5, DOI 10.1038/srep16240eng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublicatione6432c81-078d-46ea-8b1b-8b528a4cacbe
relation.isAuthorOfPublication2e744f44-126c-4afe-be0e-97e515a4521f
relation.isAuthorOfPublication82d80256-8c59-4d50-813e-702ac179713d
relation.isAuthorOfPublication.latestForDiscoverye6432c81-078d-46ea-8b1b-8b528a4cacbe
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_LIGUORI_Directional_Topography_Influences_Adipose_Mesenchymal_Stromal_Cell_Plasticity_2019.PDF
Tamanho:
11.66 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)