Putative contributions of the sex chromosome proteins SOX3 and SRY to neurodevelopmental disorders

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
FELTRIN, Arthur Sant'Anna
PEREIRA, Jose Geraldo de Carvalho
SANTOS, Ana Cecilia Feio dos
MASCHIETTO, Mariana
Citação
AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, v.180, n.6, Special Issue, p.390-414, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The male-biased prevalence of certain neurodevelopmental disorders and the sex-biased outcomes associated with stress exposure during gestation have been previously described. Here, we hypothesized that genes distinctively targeted by only one or both homologous proteins highly conserved across therian mammals, SOX3 and SRY, could induce sexual adaptive changes that result in a differential risk for neurodevelopmental disorders. ChIP-seq/chip data showed that SOX3/SRY gene targets were expressed in different brain cell types in mice. We used orthologous human genes in rodent genomes to extend the number of SOX3/SRY set (1,721). These genes were later found to be enriched in five modules of coexpressed genes during the early and mid-gestation periods (FDR < 0.05), independent of sexual hormones. Genes with differential expression (24, p < 0.0001) and methylation (40, p < 0.047) between sexes were overrepresented in this set. Exclusive SOX3 or SRY target genes were more associated with the late gestational and postnatal periods. Using autism as a model sex-biased disorder, the SOX3/SRY set was enriched in autism gene databases (FDR <= 0.05), and there were more de novo variations from the male autism spectrum disorder (ASD) samples under the SRY peaks compared to the random peaks (p < 0.024). The comparison of coexpressed networks of SOX3/SRY target genes between male autism and control samples revealed low preservation in gene modules related to stress response (99 genes) and neurogenesis (78 genes). This study provides evidence that while SOX3 is a regulatory mechanism for both sexes, the male-exclusive SRY also plays a role in gene regulation, suggesting a potential mechanism for sex bias in ASD.
Palavras-chave
neurodevelopmental disorder, sex, SOX3, SRY, stress
Referências
  1. Abrahams BS, 2013, MOL AUTISM, V4, DOI 10.1186/2040-2392-4-36
  2. Araujo FC, 2015, PHYSIOL GENOMICS, V47, P177, DOI 10.1152/physiolgenomics.00138.2014
  3. Arnold AP, 2004, NAT REV NEUROSCI, V5, P701, DOI 10.1038/nrn1494
  4. Arnold AP, 2004, TRENDS ENDOCRIN MET, V15, P6, DOI 10.1016/j.tem.2003.11.001
  5. Arnold AP, 2009, FRONT NEUROENDOCRIN, V30, P1, DOI 10.1016/j.yfrne.2008.11.001
  6. Autism Spectrum Disorder Working Group of the Psychiatry Genomics Consortium, 2015, AUT SPECTR DIS WORK
  7. Bale TL, 2015, NAT NEUROSCI, V18, P1413, DOI 10.1038/nn.4112
  8. Barski A, 2007, CELL, V129, P823, DOI 10.1016/j.cell.2007.05.009
  9. Bellott DW, 2014, NATURE, V508, P494, DOI 10.1038/nature13206
  10. Bergsland M, 2011, GENE DEV, V25, P2453, DOI 10.1101/gad.176008.111
  11. Bergstrom DE, 2000, GENESIS, V28, P111, DOI 10.1002/1526-968X(200011/12)28:3/4<111::AID-GENE40>3.3.CO;2-X
  12. Bhandari RK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043380
  13. Bhatnagar S, 2001, BRIT J NUTR, V85, pS139, DOI 10.1079/BJN2000306
  14. Bourgeron T, 2015, NAT REV NEUROSCI, V16, P551, DOI 10.1038/nrn3992
  15. Branco AT, 2013, HEREDITY, V111, P8, DOI 10.1038/hdy.2013.5
  16. Brunelli S, 2003, GENESIS, V36, P12, DOI 10.1002/gene.10193
  17. Budday S, 2015, FRONT CELL NEUROSCI, V9, DOI 10.3389/fncel.2015.00257
  18. Bylund M, 2003, NAT NEUROSCI, V6, P1162, DOI 10.1038/nn1131
  19. Case LK, 2013, GENOME RES, V23, P1474, DOI 10.1101/gr.156703.113
  20. Chawla K, 2013, BIOINFORMATICS, V29, P2519, DOI 10.1093/bioinformatics/btt432
  21. Cheah PS, 2015, SPRINGERPLUS, V4, DOI 10.1186/s40064-015-1194-1
  22. Chen C.-Y., 2016, BIORXIV, DOI [10.1101/082289, DOI 10.1101/082289]
  23. Choi J, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006121
  24. Clement TM, 2011, BIOL REPROD, V85, P277, DOI 10.1095/biolreprod.110.090282
  25. Codina-Sola M, 2015, MOL AUTISM, V6, DOI 10.1186/s13229-015-0017-0
  26. Collignon J, 1996, DEVELOPMENT, V122, P509
  27. Cortez D, 2014, NATURE, V508, P488, DOI 10.1038/nature13151
  28. Czech DP, 2012, J NEUROCHEM, V122, P260, DOI 10.1111/j.1471-4159.2012.07782.x
  29. De Rubeis S, 2014, NATURE, V515, P209, DOI 10.1038/nature13772
  30. Devlin B, 2012, CURR OPIN GENET DEV, V22, P229, DOI 10.1016/j.gde.2012.03.002
  31. Dewing P, 2006, CURR BIOL, V16, P415, DOI 10.1016/j.cub.2006.01.017
  32. Dewing P, 2003, MOL BRAIN RES, V118, P82, DOI 10.1016/S0169-328X(03)00339-5
  33. Dimas AS, 2012, GENOME RES, V22, P2368, DOI 10.1101/gr.134981.111
  34. Douet V, 2007, BIOCHEM BIOPH RES CO, V354, P66, DOI 10.1016/j.bbrc.2006.12.151
  35. Eisinger BE, 2013, BMC NEUROSCI, V14, DOI 10.1186/1471-2202-14-147
  36. Ellegren H, 2007, NAT REV GENET, V8, P689, DOI 10.1038/nrg2167
  37. FOSTER JW, 1994, P NATL ACAD SCI USA, V91, P1927, DOI 10.1073/pnas.91.5.1927
  38. Giedd JN, 1997, PROG NEURO-PSYCHOPH, V21, P1185, DOI 10.1016/S0278-5846(97)00158-9
  39. Glahn F, 2008, ARCH TOXICOL, V82, P513, DOI 10.1007/s00204-008-0331-9
  40. Grabrucker AM, 2014, DEV NEUROBIOL, V74, P136, DOI 10.1002/dneu.22089
  41. Grabrucker AM, 2011, EMBO J, V30, P569, DOI 10.1038/emboj.2010.336
  42. Graves JAM, 2016, NAT REV GENET, V17, P33, DOI 10.1038/nrg.2015.2
  43. Guberman JM, 2011, DATABASE-OXFORD, DOI 10.1093/database/bar041
  44. Gupta S, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6748
  45. Hagmeyer S, 2015, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00443
  46. HALAS ES, 1977, PHYSIOL BEHAV, V19, P653, DOI 10.1016/0031-9384(77)90040-3
  47. Hicks SW, 2005, BBA-MOL CELL RES, V1744, P406, DOI 10.1016/j.bbamcr.2005.03.002
  48. HOLLER M, 1988, GENE DEV, V2, P1127, DOI 10.1101/gad.2.9.1127
  49. Hong KH, 2000, J NUTR BIOCHEM, V11, P165, DOI 10.1016/S0955-2863(99)00089-3
  50. Hu YH, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-357
  51. Jin VX, 2007, GENOME RES, V17, P807, DOI 10.1101/gr.6006107
  52. Jing MY, 2015, J TRACE ELEM MED BIO, V30, P77, DOI 10.1016/j.jtemb.2014.10.013
  53. Joel D, 2017, NEUROPSYCHOPHARMACOL, V42, P379, DOI 10.1038/npp.2016.79
  54. Kang HJ, 2011, NATURE, V478, P483, DOI 10.1038/nature10523
  55. Kido T, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04117-6
  56. Kimura H, 2013, J HUM GENET, V58, P439, DOI 10.1038/jhg.2013.66
  57. KIRKSEY A, 1994, AM J CLIN NUTR, V60, P782
  58. KIRKSEY A, 1991, AM J CLIN NUTR, V54, P657
  59. Langfelder P, 2007, BMC SYST BIOL, V1, DOI 10.1186/1752-0509-1-54
  60. Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559
  61. Langfelder P, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1001057
  62. Lee J, 2012, BIOESSAYS, V34, P454, DOI 10.1002/bies.201100159
  63. Lemos B, 2008, SCIENCE, V319, P91, DOI 10.1126/science.1148861
  64. Lemos B, 2010, P NATL ACAD SCI USA, V107, P15826, DOI 10.1073/pnas.1010383107
  65. Lenz KM, 2015, NEUROSCIENTIST, V21, P306, DOI 10.1177/1073858414536468
  66. Lesch BJ, 2016, NAT GENET, V48, P888, DOI 10.1038/ng.3591
  67. Levenson CW, 2011, ADV NUTR, V2, P96, DOI 10.3945/an.110.000174
  68. Li YM, 2014, CELL REP, V8, P723, DOI 10.1016/j.celrep.2014.06.055
  69. Lin S, 2014, P NATL ACAD SCI USA, V111, P17224, DOI 10.1073/pnas.1413624111
  70. Loke H, 2015, INT J BIOCHEM CELL B, V65, P139, DOI 10.1016/j.biocel.2015.05.024
  71. Lombardo MV, 2012, J NEUROSCI, V32, P674, DOI 10.1523/JNEUROSCI.4389-11.2012
  72. Maschietto M, 2017, SCI REP-UK, V7, DOI 10.1038/srep44547
  73. Matys V, 2006, NUCLEIC ACIDS RES, V34, pD108, DOI 10.1093/nar/gkj143
  74. Mayer A, 2000, NEUROGENETICS, V3, P25, DOI 10.1007/s100480000093
  75. McAninch D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113361
  76. McCarthy MM, 2012, J NEUROSCI, V32, P2241, DOI 10.1523/JNEUROSCI.5372-11.2012
  77. MCKENZIE JM, 1975, J NUTR, V105, P1466
  78. Mcrae JF, 2017, NATURE, V542, P433, DOI 10.1038/nature21062
  79. Miller JA, 2014, NATURE, V508, P199, DOI 10.1038/nature13185
  80. Milsted A, 2004, NEUROSCI LETT, V369, P203, DOI 10.1016/j.neulet.2004.07.052
  81. Mottron L, 2015, MOL AUTISM, V6, DOI 10.1186/s13229-015-0024-1
  82. Mueller BR, 2008, J NEUROSCI, V28, P9055, DOI 10.1523/JNEUROSCI.1424-08.2008
  83. Murmu MS, 2006, EUR J NEUROSCI, V24, P1477, DOI 10.1111/j.1460-9568.2006.05024.x
  84. Neufang S, 2009, CEREB CORTEX, V19, P464, DOI 10.1093/cercor/bhn100
  85. Ngun TC, 2011, FRONT NEUROENDOCRIN, V32, P227, DOI 10.1016/j.yfrne.2010.10.001
  86. Ober C, 2008, NAT REV GENET, V9, P911, DOI 10.1038/nrg2415
  87. Parikshak NN, 2016, NATURE, V540, P423, DOI 10.1038/nature20612
  88. Parikshak NN, 2013, CELL, V155, P1008, DOI 10.1016/j.cell.2013.10.031
  89. Peper JS, 2012, J NEUROSCI, V32, P6745, DOI 10.1523/JNEUROSCI.1012-12.2012
  90. Petrovski S, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003709
  91. Pfaender S, 2014, METALLOMICS, V6, P960, DOI 10.1039/c4mt00008k
  92. Pialoux V, 2009, FREE RADICAL BIO MED, V46, P321, DOI 10.1016/j.freeradbiomed.2008.10.047
  93. Pilsner JR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037147
  94. Quinlan AR, 2010, BIOINFORMATICS, V26, P841, DOI 10.1093/bioinformatics/btq033
  95. R Core Team, 2015, R LANG ENV STAT COMP
  96. Ratnu VS, 2017, J NEUROSCI RES, V95, P301, DOI 10.1002/jnr.23886
  97. Reiner O, 2016, J NEUROCHEM, V136, P440, DOI 10.1111/jnc.13403
  98. Reinius B, 2009, MOL PSYCHIATR, V14, P988, DOI 10.1038/mp.2009.79
  99. REISERT I, 1991, TRENDS NEUROSCI, V14, P468, DOI 10.1016/0166-2236(91)90047-X
  100. Rinn JL, 2005, TRENDS GENET, V21, P298, DOI 10.1016/j.tig.2005.03.005
  101. Rosenbloom KR, 2015, NUCLEIC ACIDS RES, V43, pD670, DOI 10.1093/nar/gku1177
  102. Sacher J, 2013, MAGN RESON IMAGING, V31, P366, DOI 10.1016/j.mri.2012.06.007
  103. Sackton TB, 2013, GENOME BIOL EVOL, V5, P255, DOI 10.1093/gbe/evt005
  104. Sagvolden T, 2005, BIOL PSYCHIAT, V57, P1239, DOI 10.1016/j.biopsych.2005.02.002
  105. Sanders SJ, 2015, NEURON, V87, P1215, DOI 10.1016/j.neuron.2015.09.016
  106. Sandstead HH, 2003, J TRACE ELEM EXP MED, V16, P165, DOI 10.1002/jtra.10042
  107. SANDSTEAD HH, 1975, FED PROC, V34, P86
  108. Schaafsma SM, 2014, FRONT NEUROENDOCRIN, V35, P255, DOI 10.1016/j.yfrne.2014.03.006
  109. Schroder M, 2008, CELL MOL LIFE SCI, V65, P862, DOI 10.1007/s00018-007-7383-5
  110. Schug J, 2005, GENOME BIOL, V6, DOI 10.1186/gb-2005-6-4-r33
  111. Sekido R, 2014, ADV GENET, V86, P135, DOI 10.1016/B978-0-12-800222-3.00007-3
  112. Sharma K, 2015, NAT NEUROSCI, V18, P1819, DOI 10.1038/nn.4160
  113. Skaletsky H, 2003, NATURE, V423, P825, DOI 10.1038/nature01722
  114. Smoller JW, 2013, LANCET, V381, P1371, DOI 10.1016/S0140-6736(12)62129-1
  115. Spiers H, 2015, GENOME RES, V25, P338, DOI 10.1101/gr.180273.114
  116. Stiles J, 2010, NEUROPSYCHOL REV, V20, P327, DOI 10.1007/s11065-010-9148-4
  117. Sutton E, 2011, J CLIN INVEST, V121, P328, DOI 10.1172/JCI42580
  118. Szklarczyk D, 2017, NUCLEIC ACIDS RES, V45, pD362, DOI 10.1093/nar/gkw937
  119. Tau GZ, 2010, NEUROPSYCHOPHARMACOL, V35, P147, DOI 10.1038/npp.2009.115
  120. Thompson CL, 2014, NEURON, V83, P309, DOI 10.1016/j.neuron.2014.05.033
  121. Tobi EW, 2009, HUM MOL GENET, V18, P4046, DOI 10.1093/hmg/ddp353
  122. Topalovic V, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184099
  123. Trabzuni D, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3771
  124. Turner ME, 2011, AM J PHYSIOL-REG I, V301, pR561, DOI 10.1152/ajpregu.00645.2010
  125. Tyszka-Czochara M, 2014, ACTA POL PHARM, V71, P369
  126. Verma D, 2014, PROG NEURO-PSYCHOPH, V50, P11, DOI 10.1016/j.pnpbp.2013.11.010
  127. Vilella AJ, 2009, GENOME RES, V19, P327, DOI 10.1101/gr.073585.107
  128. Voineagu I, 2011, NATURE, V474, P380, DOI 10.1038/nature10110
  129. Wainstock T, 2015, STRESS, V18, P49, DOI 10.3109/10253890.2014.974153
  130. WALLWORK JC, 1985, J NUTR, V115, P252
  131. Wang J, 2013, NUCLEIC ACIDS RES, V41, pW77, DOI 10.1093/nar/gkt439
  132. Wang P, 2018, TRANSL PSYCHIAT, V8, DOI 10.1038/s41398-017-0058-6
  133. Weinstock M, 2011, STRESS, V14, P604, DOI 10.3109/10253890.2011.588294
  134. Werling DM, 2016, BIOL SEX DIFFER, V7, DOI 10.1186/s13293-016-0112-8
  135. Werling DM, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10717
  136. Wijchers PJ, 2010, DEV CELL, V19, P477, DOI 10.1016/j.devcel.2010.08.005
  137. Wolstenholme JT, 2013, GENES BRAIN BEHAV, V12, P166, DOI 10.1111/gbb.12010
  138. Wood HB, 1999, MECH DEVELOP, V86, P197, DOI 10.1016/S0925-4773(99)00116-1
  139. Wu JB, 2009, FASEB J, V23, P4029, DOI 10.1096/fj.09-139097
  140. Xu J, 2002, HUM MOL GENET, V11, P1409, DOI 10.1093/hmg/11.12.1409
  141. Xu J, 2013, BRAIN RES, V1527, P57, DOI 10.1016/j.brainres.2013.06.025
  142. Yanagisawa Y, 2002, BBA-GENE STRUCT EXPR, V1577, P457, DOI 10.1016/S0167-4781(02)00482-7
  143. Yuen RKC, 2017, NAT NEUROSCI, V20, P602, DOI 10.1038/nn.4524
  144. Zagron G, 2006, BEHAV BRAIN RES, V175, P323, DOI 10.1016/j.bbr.2006.09.003
  145. Zaits MN, 2014, MOL PSYCHIATR, V19, P848, DOI 10.1038/mp.2013.93
  146. Zhang-James Y, 2014, BEHAV BRAIN RES, V269, P103, DOI 10.1016/j.bbr.2014.04.035
  147. Zhu WG, 2003, MOL CELL BIOL, V23, P4056, DOI 10.1128/MCB.23.12.4056-4065.2003
  148. Ziats MN, 2013, MOL AUTISM, V4, DOI 10.1186/2040-2392-4-10