Bloodstream Infections caused by Klebsiella pneumoniae and Serratia marcescens isolates co-harboring NDM-1 and KPC-2

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Citação
ANNALS OF CLINICAL MICROBIOLOGY AND ANTIMICROBIALS, v.20, n.1, article ID 57, 8p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Carbapenem-resistant Enterobacteriaceae are a worldwide health problem and isolates carrying both bla(KPC-2) and bla(NDM-1) are unusual. Here we describe the microbiological and clinical characteristics of five cases of bloodstream infections (BSI) caused by carbapenem-resistant Klebsiella pneumoniae and Serratia marcescens having both bla(KPC-2) and bla(NDM-1). Of the five blood samples, three are from hematopoietic stem cell transplantation patients, one from a renal transplant patient, and one from a surgical patient. All patients lived in low-income neighbourhoods and had no travel history. Despite antibiotic treatment, four out of five patients died. The phenotypic susceptibility assays showed that meropenem with the addition of either EDTA, phenylboronic acid (PBA), or both, increased the zone of inhibition in comparison to meropenem alone. Molecular tests showed the presence of bla(KPC-2) and bla(NDM-1) genes. K. pneumoniae isolates were assigned to ST258 or ST340 by whole genome sequencing. This case-series showed a high mortality among patients with BSI caused by Enterobacteriae harbouring both carbapenemases. The detection of carbapenemase-producing isolates carrying both bla(KPC-2) and bla(NDM-1) remains a challenge when using only phenotypic assays. Microbiology laboratories must be alert for K. pneumoniae isolates producing both KPC-2 and NDM-1.
Palavras-chave
Enterobacteriaceae, Carbapenem resistance, Carbapenemases, bla(KPC-2), bla(NDM-1)
Referências
  1. Bradford PA, 2004, CLIN INFECT DIS, V39, P55, DOI 10.1086/421495
  2. Chen Y, 2011, J ANTIMICROB CHEMOTH, V66, P1255, DOI 10.1093/jac/dkr082
  3. CLSI, 2017, J SERV MARK, DOI [10.1108/08876049410065598, DOI 10.1108/08876049410065598]
  4. Cuthbertson L, 2007, P NATL ACAD SCI USA, V104, P19529, DOI 10.1073/pnas.0705709104
  5. Carvalho-Assef APD, 2013, J ANTIMICROB CHEMOTH, V68, P2956, DOI 10.1093/jac/dkt298
  6. Davidson AL, 2008, MICROBIOL MOL BIOL R, V72, P317, DOI 10.1128/MMBR.00031-07
  7. Galens K, 2011, STAND GENOMIC SCI, V4, P244, DOI 10.4056/sigs.1223234
  8. Jia XJ, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.00658
  9. Kazi M, 2015, INFECT CONT HOSP EP, V36, P116, DOI 10.1017/ice.2014.33
  10. Kilic A, 2015, ANN LAB MED, V35, P382, DOI 10.3343/alm.2015.35.3.382
  11. Kumarasamy KK, 2010, LANCET INFECT DIS, V10, P597, DOI 10.1016/S1473-3099(10)70143-2
  12. Larsen MV, 2012, J CLIN MICROBIOL, V50, P1355, DOI 10.1128/JCM.06094-11
  13. Matuschek E, 2018, CLIN MICROBIOL INFEC, V24, P865, DOI 10.1016/j.cmi.2017.11.020
  14. Miao MH, 2019, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.03341
  15. Migliavacca R, 2002, J CLIN MICROBIOL, V40, P4388, DOI 10.1128/JCM.40.11.4388-4390.2002
  16. Munoz-Price LS, 2013, LANCET INFECT DIS, V13, P785, DOI 10.1016/S1473-3099(13)70190-7
  17. Oliveira S, 2014, J ANTIMICROB CHEMOTH, V69, P849, DOI 10.1093/jac/dkt431
  18. Pereira PS, 2015, MICROB DRUG RESIST, V21, P234, DOI 10.1089/mdr.2014.0171
  19. Quezada-Aguiluz M, 2020, J GLOB ANTIMICROB RE, V21, P1, DOI 10.1016/j.jgar.2020.02.004
  20. Quiles MG, 2015, BRAZ J MED BIOL RES, V48, P174, DOI [10.1590/1414-431X20144154, 10.1590/1414-431x20144154]
  21. Remya P, 2019, J LAB PHYS, V11, P312, DOI 10.4103/JLP.JLP_111_19
  22. Rizek C, 2014, ANN CLIN MICROB ANTI, V13, DOI 10.1186/s12941-014-0043-3
  23. Rozales FP, 2014, INT J INFECT DIS, V25, P79, DOI 10.1016/j.ijid.2014.01.005
  24. Seiffert SN, 2014, INT J ANTIMICROB AG, V44, P260, DOI 10.1016/j.ijantimicag.2014.05.008
  25. Silva KE, 2015, J CLIN MICROBIOL, V53, P2324, DOI 10.1128/JCM.00727-15
  26. Solgi H, 2017, EUR J CLIN MICROBIOL, V36, P2127, DOI 10.1007/s10096-017-3035-3
  27. Walsh TR, 2005, CLIN MICROBIOL REV, V18, P306, DOI 10.1128/CMR.18.2.306-325.2005
  28. Wang J, 2017, ANTIMICROB AGENTS CH, V61, DOI [10.1128/AAC.00877-17, 10.1128/aac.00877-17]
  29. Wei DD, 2018, MICROBIOL RESOUR ANN, V6, DOI 10.1128/genomeA.00192-18
  30. Wu WJ, 2015, ANTIMICROB AGENTS CH, V59, P6625, DOI 10.1128/AAC.01275-15
  31. Xie LY, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00133
  32. Yan JR, 2017, ANN LAB MED, V37, P398, DOI 10.3343/alm.2017.37.5.398
  33. Zerbino DR, 2008, GENOME RES, V18, P821, DOI 10.1101/gr.074492.107
  34. Zerbino DR, 2010, CURR PROTOC BIOINFOR, DOI [10.1002/0471250953.bi1105s31, DOI 10.1002/0471250953.BI1105S31]