Postoperative Pulmonary Hemodynamics and Systemic Inflammatory Response in Pediatric Patients Undergoing Surgery for Congenital Heart Defects

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
HINDAWI LTD
Citação
MEDIATORS OF INFLAMMATION, v.2022, article ID 3977585, 12p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
There is scarce information about the relationships between postoperative pulmonary hemodynamics, inflammation, and outcomes in pediatric patients with congenital cardiac communications undergoing surgery. We prospectively studied 40 patients aged 11 (8-17) months (median with interquartile range) with a preoperative mean pulmonary arterial pressure of 48 (34-54) mmHg who were considered to be at risk for postoperative pulmonary hypertension. The immediate postoperative pulmonary/systemic mean arterial pressure ratio (PAP/SAP(IPO), mean of first 4 values obtained in the intensive care unit, readings at 2-hour intervals) was correlated directly with PAP/SAP registered in the surgical room just after cardiopulmonary bypass (r=0.68, p < 0.001). For the entire cohort, circulating levels of 15 inflammatory markers changed after surgery. Compared with patients with PAP/SAP(IPO)& LE;0.40 (n=22), those above this level (n=18) had increased pre- and postoperative serum levels of granulocyte colony-stimulating factor (p=0.040), interleukin-1 receptor antagonist (p=0.020), interleukin-6 (p=0.003), and interleukin-21 (p=0.047) (panel for 36 human cytokines) and increased mean platelet volume (p=0.018). Using logistic regression analysis, a PAP/SAP(IPO)> 0.40 and a heightened immediate postoperative serum level of macrophage migration inhibitory factor (quartile analysis) were shown to be predictive of significant postoperative cardiopulmonary events (respective hazard ratios with 95% CIs, 5.07 (1.10-23.45), and 3.29 (1.38-7.88)). Thus, the early postoperative behavior of the pulmonary circulation and systemic inflammatory response are closely related and can be used to predict outcomes in this population.
Palavras-chave
Referências
  1. Abman SH, 2015, CIRCULATION, V132, P2037, DOI 10.1161/CIR.0000000000000329
  2. Adatia I., 2011, PEDIAT PULMONARY HYP, P209
  3. Arend WR, 2002, CYTOKINE GROWTH F R, V13, P323, DOI 10.1016/S1359-6101(02)00020-5
  4. Bakogiannis C, 2019, CYTOKINE, V122, DOI 10.1016/j.cyto.2017.09.013
  5. Boehne M, 2017, J CARDIAC SURG, V32, P116, DOI 10.1111/jocs.12879
  6. Boneberg EM, 2002, INFLAMM RES, V51, P119, DOI 10.1007/PL00000283
  7. Brunner N, 2014, PULM CIRC, V4, P10, DOI 10.1086/674885
  8. Buchner K, 2003, J PATHOL, V201, P288, DOI 10.1002/path.1425
  9. Bui CB, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01480
  10. Burke DL, 2009, AM J PHYSIOL-LUNG C, V297, pL238, DOI 10.1152/ajplung.90591.2008
  11. Calandra T, 2003, NAT REV IMMUNOL, V3, P791, DOI 10.1038/nri1200
  12. Chada M, 2008, PEDIATR PULM, V43, P851, DOI 10.1002/ppul.20851
  13. Chandler WL, 2003, THROMB RES, V112, P185, DOI 10.1016/j.thromres.2003.11.006
  14. Ribeiro ZVD, 2010, ARQ BRAS CARDIOL, V94, P592, DOI 10.1590/S0066-782X2010005000042
  15. Durandy Y, 2014, ARTIF ORGANS, V38, P11, DOI 10.1111/aor.12195
  16. Fujii Y, 2020, BIOLOGY-BASEL, V9, DOI 10.3390/biology9040081
  17. Gaies MG, 2014, PEDIATR CRIT CARE ME, V15, P529, DOI 10.1097/PCC.0000000000000153
  18. Hofer A., 2015, J CLINI EXPT CARDIOL, V6, DOI [10.4172/2155-9880.1000392, DOI 10.4172/2155-9880.1000392]
  19. IDE H, 1987, ANN THORAC SURG, V44, P277, DOI 10.1016/S0003-4975(10)62074-7
  20. Justus G, 2019, CYTOKINE, V122, DOI 10.1016/j.cyto.2017.03.017
  21. Kameny RJ, 2016, ADV PULMONARY HYPERT, V15, P87
  22. Kawamura T, 1997, CAN J ANAESTH, V44, P38, DOI 10.1007/BF03014322
  23. Koestenberger M, 2009, J AM SOC ECHOCARDIOG, V22, P715, DOI 10.1016/j.echo.2009.03.026
  24. Kolte D, 2018, J AM HEART ASSOC, V7, DOI 10.1161/JAHA.118.009729
  25. Korniluk A, 2019, MEDIAT INFLAMM, V2019, DOI 10.1155/2019/9213074
  26. Kozik DJ, 2006, ANN THORAC SURG, V81, pS2347, DOI 10.1016/j.athoracsur.2006.02.073
  27. Le Hiress M, 2015, AM J RESP CRIT CARE, V192, P983, DOI 10.1164/rccm.201402-0322OC
  28. Lievens D, 2010, BLOOD, V116, P4317, DOI 10.1182/blood-2010-01-261206
  29. Lindberg L, 2002, J THORAC CARDIOV SUR, V123, P1155, DOI 10.1067/mtc.2002.121497
  30. Lotan D, 2001, ANN THORAC SURG, V71, P233, DOI 10.1016/S0003-4975(00)02020-8
  31. Maeda NY, 2019, MEDIAT INFLAMM, V2019, DOI 10.1155/2019/7305028
  32. McBride WT, 1996, CYTOKINE, V8, P724, DOI 10.1006/cyto.1996.0096
  33. Nakano M, 2012, CLIN EXP IMMUNOL, V170, P94, DOI 10.1111/j.1365-2249.2012.04638.x
  34. Natanov R, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0205437
  35. O'Grady NP, 2002, CLIN INFECT DIS, V35, P1281, DOI 10.1086/344188
  36. Parmigiani A, 2012, J IMMUNOL, V188
  37. Riedemann NC, 2003, NAT MED, V9, P517, DOI 10.1038/nm0503-517
  38. Rivera IR, 2013, ECHOCARDIOGR-J CARD, V30, P952, DOI 10.1111/echo.12163
  39. Souza MFS, 2020, CYTOKINE, V134, DOI 10.1016/j.cyto.2020.155192
  40. Toyama S, 2008, J ANESTH, V22, P341, DOI 10.1007/s00540-008-0645-z
  41. Tu L., 2012, AM J RESP CRIT CARE, V187, pA1229, DOI [10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A1229, DOI 10.1164/AJRCCM-CONFERENCE.2012.185.1_MEETINGABSTRACTS.A1229]
  42. VOELKEL NF, 1994, AM J RESP CELL MOL, V11, P664, DOI 10.1165/ajrcmb.11.6.7946395
  43. Zhang B, 2012, MICROVASC RES, V83, P205, DOI 10.1016/j.mvr.2011.09.014
  44. Zhang B, 2012, MEDIAT INFLAMM, V2012, DOI 10.1155/2012/840737