Evidence for a protective role of Protein Disulfide Isomerase-A1 against aortic dissection

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Citação
ATHEROSCLEROSIS, v.382, article ID 117283, 9p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and aims: Redox signaling is involved in the pathophysiology of aortic aneurysm/dissection. Protein Disulfide Isomerases and its prototype PDIA1 are thiol redox chaperones mainly from endoplasmic reticulum (ER), while PDIA1 cell surface pool redox-regulates thrombosis, cytoskeleton remodeling and integrin activation, which are mechanisms involved in aortic disease. Here we investigate the roles of PDIA1 in aortic dissection. Methods: Initially, we assessed the outcome of aortic aneurysm/dissection in transgenic PDIA1-overexpressing FVB mice using a model of 28-day exposure to lysyl oxidase inhibitor BAPN plus angiotensin-II infusion. In a second protocol, we assessed the effects of PDIA1 inhibitor isoquercetin (IQ) against aortic dissection in C57BL/6 mice exposed to BAPN for 28 days. Results: Transgenic PDIA1 overexpression associated with ca. 50% (p = 0.022) decrease (vs.wild-type) in mor-tality due to abdominal aortic rupture and protected against elastic fiber breaks in thoracic aorta. Conversely, exposure of mice to IQ increased thoracic aorta dissection-related mortality rates, from ca. 18%-50% within 28-days (p = 0.019); elastic fiber disruption and collagen deposition were also enhanced. The structurally-related compound diosmetin, which does not inhibit PDI, had negligible effects. In parallel, stretch-tension curves indicated that IQ amplified a ductile-type of biomechanical failure vs. control or BAPN-exposed mice aortas. IQ-induced effects seemed unassociated with nonspecific antioxidant effects or ER stress. In both models, echo-cardiographic analysis of surviving mice suggested that aortic rupture was dissociated from progressive dilatation. Conclusions: Our data indicate a protective role of PDIA1 against aortic dissection/rupture and potentially un-covers a novel integrative mechanism coupling redox and biomechanical homeostasis in vascular remodeling.
Palavras-chave
Aortic dissection, Protein disulfide isomerase, Isoquercetin, Aortic aneurysm, Vascular biomechanics
Referências
  1. Al-abcha A, 2020, AM J CARDIOL, V128, P101, DOI 10.1016/j.amjcard.2020.04.034
  2. Canelón SP, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166392
  3. Cao GM, 2022, CELL COMMUN SIGNAL, V20, DOI 10.1186/s12964-022-00993-2
  4. Chau KH, 2013, PROG CARDIOVASC DIS, V56, P74, DOI 10.1016/j.pcad.2013.05.007
  5. Clément M, 2019, ARTERIOSCL THROM VAS, V39, P1149, DOI 10.1161/ATVBAHA.118.311727
  6. de la Fuente-Alonso A, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22933-3
  7. Dinesh NEH, 2019, HERZ, V44, P138, DOI 10.1007/s00059-019-4786-7
  8. Fernandes DC, 2021, FREE RADICAL BIO MED, V162, P603, DOI 10.1016/j.freeradbiomed.2020.11.020
  9. Gaspar RS, 2021, ANTIOXID REDOX SIGN, V35, P1116, DOI 10.1089/ars.2021.0086
  10. Han L, 2018, AGING-US, V10, P371, DOI 10.18632/aging.101394
  11. Harky Amer, 2019, Vasc Biol, V1, pR13, DOI 10.1530/VB-19-0027
  12. Humphrey JD, 2015, CIRC RES, V116, P1448, DOI 10.1161/CIRCRESAHA.114.304936
  13. Humphrey JD, 2014, SCIENCE, V344, P476, DOI 10.1126/science.1253026
  14. Iddawela Sashini, 2021, Vasc Biol, V3, pR25, DOI 10.1530/VB-20-0015
  15. Jasuja R, 2012, J CLIN INVEST, V122, P2104, DOI 10.1172/JCI61228
  16. Jia LX, 2015, J PATHOL, V236, P373, DOI 10.1002/path.4534
  17. Jiménez-Altayó F, 2018, FREE RADICAL BIO MED, V118, P44, DOI 10.1016/j.freeradbiomed.2018.02.023
  18. Kim HW, 2017, AM J PHYSIOL-HEART C, V313, pH1168, DOI 10.1152/ajpheart.00296.2017
  19. Kim HW, 2016, ARTERIOSCL THROM VAS, V36, P2138, DOI 10.1161/ATVBAHA.116.308356
  20. Kuzmik GA, 2012, J VASC SURG, V56, P565, DOI 10.1016/j.jvs.2012.04.053
  21. Laurindo FRM, 2012, FREE RADICAL BIO MED, V52, P1954, DOI 10.1016/j.freeradbiomed.2012.02.037
  22. Li DY, 2020, J CARDIOVASC PHARM, V75, P229, DOI 10.1097/FJC.0000000000000785
  23. Lin L, 2015, J BIOL CHEM, V290, P23543, DOI 10.1074/jbc.M115.666180
  24. McLaughlin SH, 1998, BIOCHEM J, V331, P793, DOI 10.1042/bj3310793
  25. Mozaffarian D, 2018, CIRC RES, V122, P369, DOI 10.1161/CIRCRESAHA.117.309008
  26. Navas-Madroñal M, 2019, CLIN SCI, V133, P1421, DOI 10.1042/CS20190399
  27. Nolasco P, 2020, BBA-MOL BASIS DIS, V1866, DOI 10.1016/j.bbadis.2019.165587
  28. Oller J, 2021, CIRCULATION, V143, P2091, DOI 10.1161/CIRCULATIONAHA.120.051171
  29. Oteiza PI, 2018, MOL ASPECTS MED, V61, P41, DOI 10.1016/j.mam.2018.01.001
  30. Paes AMD, 2011, J LEUKOCYTE BIOL, V90, P799, DOI 10.1189/jlb.0610324
  31. Parker SJ, 2018, AM J PHYSIOL-HEART C, V315, pH1112, DOI 10.1152/ajpheart.00089.2018
  32. Perdikaris P, 2014, ANN BIOMED ENG, V42, P1012, DOI 10.1007/s10439-014-0970-3
  33. Pescatore LA, 2012, J BIOL CHEM, V287, P29290, DOI 10.1074/jbc.M112.394551
  34. Petsophonsakul P, 2019, ARTERIOSCL THROM VAS, V39, P1351, DOI 10.1161/ATVBAHA.119.312787
  35. Pinard A, 2019, CIRC RES, V124, P588, DOI 10.1161/CIRCRESAHA.118.312436
  36. Quintana RA, 2019, CIRC RES, V124, P607, DOI 10.1161/CIRCRESAHA.118.313187
  37. Ren WH, 2016, SCI REP-UK, V6, DOI 10.1038/srep28149
  38. Serreli G, 2019, FOOD FUNCT, V10, P6999, DOI [10.1039/c9fo01733j, 10.1039/C9FO01733J]
  39. Siu KL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088899
  40. Moretti AIS, 2017, ARCH BIOCHEM BIOPHYS, V617, P106, DOI 10.1016/j.abb.2016.11.007
  41. Stepien KL, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms231911078
  42. Sun WL, 2021, CELL REP, V36, DOI 10.1016/j.celrep.2021.109641
  43. Tanaka LY, 2020, ANTIOXID REDOX SIGN, V33, P280, DOI 10.1089/ars.2019.8012
  44. Tanaka LY, 2019, AM J PHYSIOL-HEART C, V316, pH566, DOI 10.1152/ajpheart.00379.2018
  45. Tanaka LY, 2017, FREE RADICAL BIO MED, V109, P11, DOI 10.1016/j.freeradbiomed.2017.01.025
  46. Tanaka LY, 2016, HYPERTENSION, V67, P613, DOI 10.1161/HYPERTENSIONAHA.115.06177
  47. Valentová K, 2014, FOOD CHEM TOXICOL, V68, P267, DOI 10.1016/j.fct.2014.03.018
  48. Wang KJ, 2020, J CARDIOVASC PHARM, V76, P86, DOI 10.1097/FJC.0000000000000837
  49. Wang L, 2012, EUR J PHARMACOL, V690, P133, DOI 10.1016/j.ejphar.2012.06.018
  50. Watanabe K, 2020, J BIOL CHEM, V295, P10092, DOI 10.1074/jbc.RA120.013753
  51. Winterbourn CC, 2008, FREE RADICAL BIO MED, V45, P549, DOI 10.1016/j.freeradbiomed.2008.05.004
  52. Yue JN, 2020, ANN VASC SURG, V67, P474, DOI 10.1016/j.avsg.2020.03.002
  53. Zwicker JI, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.125851