Mechanisms underpinning inattention and hyperactivity: neurocognitive support for ADHD dimensionality

Carregando...
Imagem de Miniatura
Citações na Scopus
51
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
CAMBRIDGE UNIV PRESS
Autores
SALUM, G. A.
SONUGA-BARKE, E.
SERGEANT, J.
VANDEKERCKHOVE, J.
GADELHA, A.
Citação
PSYCHOLOGICAL MEDICINE, v.44, n.15, p.3189-3201, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background. Taxometric and behavioral genetic studies suggest that attention deficit hyperactivity disorder (ADHD) is best modeled as a dimension rather than a category. We extended these analyses by testing for the existence of putative ADHD-related deficits in basic information processing (BIP) and inhibitory-based executive function (IB-EF) in individuals in the subclinical and full clinical ranges. Consistent with the dimensional model, we predicted that ADHD-related deficits would be expressed across the full spectrum, with the degree of deficit linearly related to the severity of the clinical presentation. Method. A total of 1547 children (aged 6-12 years) participated in the study. The Development and Well-Being Assessment (DAWBA) was used to classify children into groups according to levels of inattention and hyperactivity independently: (1) asymptomatic, (2) subthreshold minimal, (3) subthreshold moderate and (4) clinical ADHD. Neurocognitive performance was evaluated using a two-choice reaction time task (2C-RT) and a conflict control task (CCT). BIP and IB-EF measures were derived using a diffusion model (DM) for decomposition of reaction time (RT) and error data. Results. Deficient BIP was found in subjects with minimal, moderate and full ADHD defined in terms of inattention (in both tasks) and hyperactivity/impulsivity dimensions (in the 2C-RT). The size of the deficit increased in a linear manner across increasingly severe presentations of ADHD. IB-EF was unrelated to ADHD. Conclusions. Deficits in BIP operate at subclinical and clinical levels of ADHD. The linear nature of this relationship provides support for a dimensional model of ADHD in which diagnostic thresholds are defined in terms of clinical and societal burden rather than representing discrete pathophysiological states.
Palavras-chave
ADHD, dimensionality, hyperactivity, inattention, neurocognitive, neuropsychology
Referências
  1. Angold A, 2012, J AM ACAD CHILD PSY, V51, P506, DOI 10.1016/j.jaac.2012.02.020
  2. Barkley RA, 1997, PSYCHOL BULL, V121, P65, DOI 10.1037/0033-2909.121.1.65
  3. Bitsakou P, 2008, J NEURAL TRANSM, V115, P261, DOI 10.1007/s00702-007-0828-z
  4. CARSON RC, 1991, J ABNORM PSYCHOL, V100, P302, DOI 10.1037/0021-843X.100.3.302
  5. Castellanos FX, 2005, BIOL PSYCHIAT, V57, P1416, DOI 10.1016/j.biopsych.2004.12.005
  6. Chamberlain SR, 2011, BIOL PSYCHIAT, V69, P1192, DOI 10.1016/j.biopsych.2010.08.019
  7. Cho SC, 2009, EUR CHILD ADOLES PSY, V18, P447, DOI 10.1007/s00787-009-0755-7
  8. CLARK LA, 1995, ANNU REV PSYCHOL, V46, P121, DOI 10.1146/annurev.ps.46.020195.001005
  9. Coghill D, 2012, J CHILD PSYCHOL PSYC, V53, P469, DOI 10.1111/j.1469-7610.2011.02511.x
  10. Coghill DR, 2007, BIOL PSYCHIAT, V62, P954, DOI 10.1016/j.biopsych.2006.12.030
  11. Cohen J., 1988, STAT POWER ANAL BEHA
  12. Faraone SV, 2006, BIOL PSYCHIAT, V60, P1081, DOI 10.1016/j.biopsych.2006.03.060
  13. Faraone SV, 2009, PSYCHOL MED, V39, P685, DOI 10.1017/S0033291708003917
  14. Frazier TW, 2007, NEUROPSYCHOLOGY, V21, P45, DOI 10.1037/0894-4105.21.1.45
  15. Goodman R, 2000, J CHILD PSYCHOL PSYC, V41, P645, DOI 10.1111/j.1469-7610.2000.tb02345.x
  16. Haslam N, 2006, AUST NZ J PSYCHIAT, V40, P639, DOI 10.1080/j.1440-1614.2006.01863.x
  17. Haslam N, 1997, J PERS SOC PSYCHOL, V73, P862, DOI 10.1037/0022-3514.73.4.862
  18. Hogan AM, 2005, DEVELOPMENTAL SCI, V8, P525, DOI 10.1111/j.1467-7687.2005.00444.x
  19. Huang-Pollock CL, 2012, J ABNORM PSYCHOL, V121, P360, DOI 10.1037/a0027205
  20. Hudziak JJ, 1998, J AM ACAD CHILD PSY, V37, P848, DOI 10.1097/00004583-199808000-00015
  21. Karalunas SL, 2012, NEUROPSYCHOLOGY, V26, P684, DOI 10.1037/a0029936
  22. Karalunas SL, 2013, J ABNORM CHILD PSYCH, V41, P837, DOI 10.1007/s10802-013-9715-2
  23. Killeen PR, 2013, NEUROSCI BIOBEHAV R, V37, P625, DOI 10.1016/j.neubiorev.2013.02.011
  24. Konrad K, 2000, CHILD NEUROPSYCHOL, V6, P286, DOI 10.1076/chin.6.4.286.3145
  25. Krol NPCM, 2006, J CLIN CHILD ADOLESC, V35, P127, DOI 10.1207/s15374424jccp3501_11
  26. Kuntsi J, 2009, J INT NEUROPSYCH SOC, V15, P570, DOI 10.1017/S135561770909081X
  27. Kuntsi Jonna, 2012, Curr Top Behav Neurosci, V9, P67, DOI 10.1007/7854_2011_145
  28. Larsson H, 2012, J CHILD PSYCHOL PSYC, V53, P73, DOI 10.1111/j.1469-7610.2011.02467.x
  29. Lehmann EL, 1975, NONPARAMETRICS STAT
  30. Levy F, 1997, J AM ACAD CHILD PSY, V36, P737, DOI 10.1097/00004583-199706000-00009
  31. Lubke GH, 2009, J AM ACAD CHILD PSY, V48, P1085, DOI 10.1097/CHI.0b013e3181ba3dbb
  32. Marcus DK, 2011, J ABNORM PSYCHOL, V120, P427, DOI 10.1037/a0021405
  33. Marcus DK, 2012, J PSYCHIATR RES, V46, P782, DOI 10.1016/j.jpsychires.2012.03.010
  34. Matte Breno, 2012, Atten Defic Hyperact Disord, V4, P53, DOI 10.1007/s12402-012-0077-3
  35. Mulder MJ, 2010, BIOL PSYCHIAT, V68, P1114, DOI 10.1016/j.biopsych.2010.07.031
  36. Neuman RJ, 1999, J AM ACAD CHILD PSY, V38, P25, DOI 10.1097/00004583-199901000-00016
  37. Nigg JT, 2005, BIOL PSYCHIAT, V57, P1224, DOI 10.1016/j.biopsych.2004.08.025
  38. Oosterlaan J, 2005, J ABNORM CHILD PSYCH, V33, P69, DOI 10.1007/s10802-005-0935-y
  39. Oosterlaan J, 1998, J CHILD PSYCHOL PSYC, V39, P411, DOI 10.1017/S0021963097002072
  40. Parisi D, 1997, BRAIN COGNITION, V34, P160, DOI 10.1006/brcg.1997.0911
  41. Polderman TJC, 2007, J CHILD PSYCHOL PSYC, V48, P1080, DOI 10.1111/j.1469-7610.2007.01783.x
  42. Quay HC, 1997, J ABNORM CHILD PSYCH, V25, P7, DOI 10.1023/A:1025799122529
  43. Ranby KW, 2012, J CLIN CHILD ADOLESC, V41, P261, DOI 10.1080/15374416.2012.654465
  44. RAPOPORT JL, 1980, ARCH GEN PSYCHIAT, V37, P933
  45. RATCLIFF R, 1988, PSYCHOL REV, V95, P385, DOI 10.1037/0033-295X.95.3.385
  46. Rhodes SM, 2006, J CHILD PSYCHOL PSYC, V47, P1184, DOI 10.1111/j.1469-7610.2006.01633.x
  47. Rhodes SM, 2012, J CHILD PSYCHOL PSYC, V53, P128, DOI 10.1111/j.1469-7610.2011.02436.x
  48. Rommelse NNJ, 2007, J ABNORM CHILD PSYCH, V35, P957, DOI 10.1007/s10802-007-9146-z
  49. Salum GA, 2013, PSYCHOL MED, V43, P733, DOI 10.1017/S0033291712001651
  50. Salum GA, 2014, PSYCHOL MED, V44, P617, DOI 10.1017/S0033291713000639
  51. Scahill L, 1999, J AM ACAD CHILD PSY, V38, P976, DOI 10.1097/00004583-199908000-00013
  52. Sergeant J, 2000, NEUROSCI BIOBEHAV R, V24, P7, DOI 10.1016/S0149-7634(99)00060-3
  53. Sergeant JA, 2003, NEUROSCI BIOBEHAV R, V27, P583, DOI 10.1016/j.neubiorev.2003.08.004
  54. Shaw P, 2011, AM J PSYCHIAT, V168, P143, DOI 10.1176/appi.ajp.2010.10030385
  55. Slusarek M, 2001, J AM ACAD CHILD PSY, V40, P355, DOI 10.1097/00004583-200103000-00016
  56. Sonuga-Barke EJS, 2005, BIOL PSYCHIAT, V57, P1231, DOI 10.1016/j.biopsych.2004.09.008
  57. Surman C, 2010, CNS NEUROSCI THER, V16, P6, DOI 10.1111/j.1755-5949.2009.00124.x
  58. Swanson J, 2011, NEUROPSYCHOPHARMACOL, V36, P207, DOI 10.1038/npp.2010.160
  59. Vandekerckhove J, 2011, PSYCHOL METHODS, V16, P44, DOI 10.1037/a0021765
  60. Vandekerckhove J, 2007, PSYCHON B REV, V14, P1011, DOI 10.3758/BF03193087
  61. Wang GJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063023
  62. Weissman MM, 2000, ARCH GEN PSYCHIAT, V57, P675, DOI 10.1001/archpsyc.57.7.675
  63. White CN, 2010, J MATH PSYCHOL, V54, P39, DOI 10.1016/j.jmp.2010.01.004
  64. Wood AC, 2010, PSYCHOL BULL, V136, P331, DOI 10.1037/a0019048