A Randomized, Controlled Trial of Exercise for Parkinsonian Individuals With Freezing of Gait

Carregando...
Imagem de Miniatura
Citações na Scopus
45
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
SILVA-BATISTA, Carla
LIMA-PARDINI, Andrea Cristina de
COELHO, Daniel Boari
TEIXEIRA, Luis Augusto
CORCOS, Daniel M.
Citação
MOVEMENT DISORDERS, v.35, n.9, p.1607-1617, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Exercises with motor complexity induce neuroplasticity in individuals with Parkinson's disease (PD), but its effects on freezing of gait are unknown. The objective of this study was to verify if adapted resistance training with instability - exercises with motor complexity will be more effective than traditional motor rehabilitation - exercises without motor complexity in improving freezing-of-gait severity, outcomes linked to freezing of gait, and brain function. Methods Freezers were randomized either to the adapted resistance training with instability group (n = 17) or to the active control group (traditional motor rehabilitation, n = 15). Both training groups performed exercises 3 times a week for 12 weeks. The primary outcome was the New Freezing of Gait Questionnaire. Secondary outcomes were freezing of gait ratio (turning task), cognitive inhibition (Stroop-III test), motor signs (Unified Parkinson's Disease Rating Scale part-III [UPDRS-III]), quality of life (PD Questionnaire 39), anticipatory postural adjustment (leg-lifting task) and brain activation during a functional magnetic resonance imaging protocol of simulated anticipatory postural adjustment task. Outcomes were evaluated before and after interventions. Results Only adapted resistance training with instability improved all the outcomes (P < 0.05). Adapted resistance training with instability was more effective than traditional motor rehabilitation (in improving freezing-of-gait ratio, motor signs, quality of life, anticipatory postural adjustment amplitude, and brain activation;P < 0.05). Our results are clinically relevant because improvement in the New Freezing of Gait Questionnaire (-4.4 points) and UPDRS-III (-7.4 points) scores exceeded the minimally detectable change (traditional motor rehabilitation group data) and the moderate clinically important difference suggested for PD, respectively. The changes in mesencephalic locomotor region activation and in anticipatory postural adjustment amplitude explained the changes in New Freezing of Gait Questionnaire scores and in freezing-of-gait ratio following adapted resistance training with instability, respectively. Conclusions Adapted resistance training with instability is able to cause significant clinical improvement and brain plasticity in freezers. (c) 2020 International Parkinson and Movement Disorder Society
Palavras-chave
anticipatory postural adjustments, BOLD, cognitive inhibition, freezers, motor complexity exercises
Referências
  1. Agosta F, 2017, J NEUROL, V264, P88, DOI 10.1007/s00415-016-8309-7
  2. ARMSTRONG DM, 1988, J PHYSIOL-LONDON, V400, P425, DOI 10.1113/jphysiol.1988.sp017130
  3. Bartels AL, 2008, MOVEMENT DISORD, V23, pS461, DOI 10.1002/mds.21912
  4. Bloem BR, 2004, MOVEMENT DISORD, V19, P871, DOI 10.1002/mds.20115
  5. BurleighJacobs A, 1997, MOVEMENT DISORD, V12, P206, DOI 10.1002/mds.870120211
  6. Carey JR, 2005, EXERC SPORT SCI REV, V33, P24
  7. Cohen J., 1988, STAT POWER ANAL BEHA, P29
  8. Cohen RG, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00060
  9. Cohen RG, 2014, J PARKINSON DIS, V4, P111, DOI 10.3233/JPD-130221
  10. Davidsdottir S, 2005, VISION RES, V45, P1285, DOI 10.1016/j.visres.2004.11.006
  11. de Lima-Pardini AC, 2017, SCI REP-UK, V7, DOI 10.1038/srep43088
  12. Drucker JH, 2019, FRONT NEUROL, V10, DOI 10.3389/fneur.2019.00537
  13. Fahn S, 1987, RECENT DEV PARKINSON, V2, P293
  14. Fasano A, 2017, ANN NEUROL, V81, P129, DOI 10.1002/ana.24845
  15. Fietzek UM, 2013, PARKINSONISM RELAT D, V19, P894, DOI 10.1016/j.parkreldis.2013.04.004
  16. Fling BW, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100291
  17. Fling BW, 2013, BRAIN, V136, P2405, DOI 10.1093/brain/awt172
  18. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  19. GARDNER RW, 1959, PSYCHOL ISSUES, V1, pU1
  20. Giladi N, 2001, J NEURAL TRANSM, V108, P53, DOI 10.1007/s007020170096
  21. Gilat M, 2019, CURR NEUROL NEUROSCI, V19, DOI 10.1007/s11910-019-0967-2
  22. Gilat M, 2017, NEUROIMAGE, V152, P207, DOI 10.1016/j.neuroimage.2017.02.073
  23. Ginis P, 2018, ANN PHYS REHABIL MED, V61, P407, DOI 10.1016/j.rehab.2017.08.002
  24. Haley SM, 2006, PHYS THER, V86, P735, DOI 10.1093/ptj/86.5.735
  25. Harrington W, 2016, IEEE ENG MED BIO, P5841, DOI 10.1109/EMBC.2016.7592056
  26. Helmich RC, 2012, HUM BRAIN MAPP, V33, P1763, DOI 10.1002/hbm.21318
  27. HUGHES AJ, 1992, J NEUROL NEUROSUR PS, V55, P181, DOI 10.1136/jnnp.55.3.181
  28. Jahn K, 2008, NEUROIMAGE, V39, P786, DOI 10.1016/j.neuroimage.2007.09.047
  29. Jenkinson M, 2002, NEUROIMAGE, V17, P825, DOI 10.1006/nimg.2002.1132
  30. Jenkinson M, 2001, MED IMAGE ANAL, V5, P143, DOI 10.1016/S1361-8415(01)00036-6
  31. Jha M, 2015, PARKINSONISM RELAT D, V21, P1184, DOI 10.1016/j.parkreldis.2015.08.009
  32. Lewis MM, 2013, CAN J NEUROL SCI, V40, P299, DOI 10.1017/S0317167100014232
  33. Lira JLO, 2020, J PHYSIOL-LONDON, V598, P1611, DOI 10.1113/JP279068
  34. Mancini M, 2017, NEUROSCIENCE, V343, P222, DOI 10.1016/j.neuroscience.2016.11.045
  35. Martens KAE, 2018, BRAIN, V141, DOI 10.1093/brain/awy019
  36. Moore O, 2007, MOVEMENT DISORD, V22, P2192, DOI 10.1002/mds.21659
  37. Myers PS, 2018, PARKINSONISM RELAT D, V53, P89, DOI 10.1016/j.parkreldis.2018.05.006
  38. Nanhoe-Mahabier W, 2013, NEUROSCIENCE, V236, P110, DOI 10.1016/j.neuroscience.2013.01.038
  39. Nieuwboer A, 2009, GAIT POSTURE, V30, P459, DOI 10.1016/j.gaitpost.2009.07.108
  40. Nijkrake MJ, 2007, PARKINSONISM RELAT D, V13, pS488, DOI 10.1016/S1353-8020(08)70054-3
  41. Nutt JG, 2011, LANCET NEUROL, V10, P734, DOI 10.1016/S1474-4422(11)70143-0
  42. Pelosin E, 2018, NEURAL PLAST, V2018, DOI 10.1155/2018/4897276
  43. Peto V, 1998, J NEUROL, V245, pS10, DOI 10.1007/PL00007730
  44. Seto E, 2001, NEUROIMAGE, V14, P284, DOI 10.1006/nimg.2001.0829
  45. Shen X, 2016, NEUROREHAB NEURAL RE, V30, P512, DOI 10.1177/1545968315613447
  46. Shine JM, 2013, BRAIN, V136, P3671, DOI 10.1093/brain/awt272
  47. Shine JM, 2013, BRAIN, V136, P1204, DOI 10.1093/brain/awt049
  48. Shulman LM, 2010, ARCH NEUROL-CHICAGO, V67, P64, DOI 10.1001/archneurol.2009.295
  49. Silva-Batista C, 2018, GAIT POSTURE, V61, P90, DOI 10.1016/j.gaitpost.2017.12.027
  50. Silva-Batista C, 2016, MED SCI SPORT EXER, V48, P1678, DOI 10.1249/MSS.0000000000000945
  51. Sinnamon HM, 2000, NEUROSCIENCE, V99, P77, DOI 10.1016/S0306-4522(00)00179-2
  52. Smith SM, 2002, HUM BRAIN MAPP, V17, P143, DOI 10.1002/hbm.10062
  53. Smith SM, 2004, NEUROIMAGE, V23, pS208, DOI 10.1016/j.neuroimage.2004.07.051
  54. Snijders AH, 2011, BRAIN, V134, P59, DOI 10.1093/brain/awq324
  55. Takakusaki K, 2013, MOVEMENT DISORD, V28, P1483, DOI 10.1002/mds.25669
  56. Tessitore A, 2012, PARKINSONISM RELAT D, V18, P781, DOI 10.1016/j.parkreldis.2012.03.018
  57. Troyer AK, 2006, AGING NEUROPSYCHOL C, V13, P20, DOI 10.1080/138255890968187
  58. Vercruysse S, 2014, CEREB CORTEX, V24, P3154, DOI 10.1093/cercor/bht170
  59. Walton CC, 2018, NPJ PARKINSON DIS, V4, DOI 10.1038/s41531-018-0052-6
  60. Wang M, 2016, J NEUROL, V263, P1583, DOI 10.1007/s00415-016-8174-4
  61. Wu T, 2005, BRAIN, V128, P2250, DOI 10.1093/brain/awh569
  62. Wu T, 2013, BRAIN, V136, P696, DOI 10.1093/brain/aws360