Effects of a Peptide Derived from the Primary Sequence of a Kallikrein Inhibitor Isolated from <i>Bauhinia bauhinioides</i> (pep-BbKI) in an Asthma-COPD Overlap (ACO) Model

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.24, n.14, article ID 11261, 26p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
(1) There are several patients with asthma-COPD overlap (ACO). A peptide derived from the primary sequence of a kallikrein inhibitor isolated from Bauhinia bauhinioides (pep-BbKI) has potent anti-inflammatory and antioxidant effects. Purpose: To investigate the effects of pep-BbKI treatment in an ACO model and compare them with those of corticosteroids. (2) BALB/c mice were divided into groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep-BbKI (treated with inhibitor), ACO-DX (dexamethasone treatment), ACO-DX-pep-BbKI (both treatments), and SAL-pep-BbKI (saline group treated with inhibitor). We evaluated: hyperresponsiveness to methacholine, bronchoalveolar lavage fluid (BALF), exhaled nitric oxide (eNO), IL-1 & beta;, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IFN-& gamma;, TNF-& alpha;, MMP-9, MMP-12, TGF-& beta;, collagen fibers, iNOS, eNO, linear mean intercept (Lm), and NF-& kappa;B in airways (AW) and alveolar septa (AS). (3) ACO-pep-BbKI reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, neutrophils, IL-5, IL-10, IL-17, IFN-& gamma;, TNF-& alpha;, MMP-12 (AW), collagen fibers, iNOS (AW), and eNO (p > 0.05). ACO-DX reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, total cells and differentials, IL-1 & beta;(AS), IL-5 (AS), IL-6 (AS), IL-10 (AS), IL-13 (AS), IFN-& gamma;, MMP-12 (AS), TGF-& beta; (AS), collagen fibers (AW), iNOS, and eNO (p > 0.05). SAL was similar to SAL-pep-BbKI for all comparisons (p > 0.05). (4) Pep-BbKI was similar to dexamethasone in reducing the majority of alterations of this ACO model.
Palavras-chave
airway remodeling, ACO, Bauhinia, inflammation, oxidative stress, serine proteinase inhibitors
Referências
  1. Almeida-Reis R, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/8287125
  2. [Anonymous], 2022, GLOB STRAT DIAGN MAN
  3. Ponce-Gallegos MA, 2017, INT J CHRONIC OBSTR, V12, P1857, DOI 10.2147/COPD.S136592
  4. Araujo APU, 2005, BIOL CHEM, V386, P561, DOI 10.1515/BC.2005.066
  5. Aristoteles LRCRB, 2013, BMC PULM MED, V13, DOI 10.1186/1471-2466-13-52
  6. Barnes PJ, 2017, CLIN SCI, V131, P1541, DOI 10.1042/CS20160487
  7. Barnes PJ, 2005, EUR RESPIR J, V25, P1084, DOI 10.1183/09031936.05.00139104
  8. Bates JHT, 2003, J APPL PHYSIOL, V94, P1297, DOI 10.1152/japplphysiol.00706.2002
  9. Biselli P.J.C., 2019, DRUG DISCOV TODAY DI, V29-30, P11, DOI [10.1016/j.ddmod.2019.10.001, DOI 10.1016/J.DDMOD.2019.10.001]
  10. Bonturi CR, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23094742
  11. Brito MV, 2014, THROMB RES, V133, P945, DOI 10.1016/j.thromres.2014.02.027
  12. Camargo LD, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01835
  13. Rodrigues APD, 2019, HISTOL HISTOPATHOL, V34, P537, DOI 10.14670/HH-18-059
  14. dos Santos TM, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01183
  15. Eynott PR, 2002, EUR J PHARMACOL, V452, P123, DOI 10.1016/S0014-2999(02)02237-9
  16. Florencio AC, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48577-4
  17. Fukuzaki S, 2021, AM J PHYSIOL-CELL PH, V320, pC341, DOI 10.1152/ajpcell.00017.2020
  18. Gafar F, 2018, RESP RES, V19, DOI 10.1186/s12931-018-0961-2
  19. Global Initiative for Asthma, 2022, GLOB STRAT ASTHM MAN
  20. Hamid Q, 2009, ANNU REV PHYSIOL, V71, P489, DOI 10.1146/annurev.physiol.010908.163200
  21. Ikeda G, 2014, AM J RESP CELL MOL, V50, P18, DOI 10.1165/rcmb.2012-0418OC
  22. Ito S, 2005, J APPL PHYSIOL, V98, P503, DOI 10.1152/japplphysiol.00590.2004
  23. Ito S, 2004, J APPL PHYSIOL, V97, P204, DOI 10.1152/japplphysiol.01246.2003
  24. Kharitonov SA, 1996, AM J RESP CRIT CARE, V153, P454, DOI 10.1164/ajrccm.153.1.8542158
  25. King PT, 2015, CLIN TRANSL MED, V4, DOI 10.1186/s40169-015-0068-z
  26. Ling MF, 2016, ANN AM THORAC SOC, V13, pS25, DOI 10.1513/AnnalsATS.201507-431MG
  27. Lourenço JD, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098216
  28. Martins-Olivera BT, 2016, MEDIAT INFLAMM, V2016, DOI 10.1155/2016/5346574
  29. Maselli DJ, 2019, CHEST, V155, P168, DOI 10.1016/j.chest.2018.07.028
  30. Neuhof C, 2003, BIOL CHEM, V384, P939, DOI 10.1515/BC.2003.105
  31. Oliva LV, 2015, PROCESS BIOCHEM, V50, P1958, DOI 10.1016/j.procbio.2015.06.004
  32. Oliva MLV, 2009, AN ACAD BRAS CIENC, V81, P615, DOI 10.1590/S0001-37652009000300023
  33. Oliva MLV, 1999, IMMUNOPHARMACOLOGY, V45, P163, DOI 10.1016/S0162-3109(99)00075-2
  34. Oliva MLV, 2001, CURR MED CHEM, V8, P977, DOI 10.2174/0929867013372779
  35. Pantano C, 2008, AM J RESP CRIT CARE, V177, P959, DOI 10.1164/rccm.200707-1096OC
  36. Park HY, 2016, INT J CHRONIC OBSTR, V11, P23, DOI 10.2147/COPD.S94797
  37. Parulekar AD, 2017, CURR OPIN PULM MED, V23, P3, DOI 10.1097/MCP.0000000000000343
  38. Pavord ID, 1999, LANCET, V353, P2213, DOI 10.1016/S0140-6736(99)01813-9
  39. Persson IM, 2018, RESP RES, V19, DOI 10.1186/s12931-018-0725-z
  40. Possa SS, 2012, AM J PHYSIOL-LUNG C, V303, pL939, DOI 10.1152/ajplung.00034.2012
  41. Pouwels SD, 2016, AM J PHYSIOL-LUNG C, V310, P1377, DOI 10.1152/ajplung.00174.2015
  42. Prado CM, 2005, AM J PHYSIOL-LUNG C, V288, pL741, DOI 10.1152/ajplung.00208.2004
  43. Putcha N, 2016, IMMUNOL ALLERGY CLIN, V36, P515, DOI 10.1016/j.iac.2016.03.003
  44. Raundhal M, 2015, J CLIN INVEST, V125, P3037, DOI 10.1172/JCI80911
  45. Richardson M., 1991, METHODS BIOCH, V5, P259
  46. Rico-Rosillo Guadalupe, 2011, Rev Alerg Mex, V58, P107
  47. Bortolozzo ASS, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/9274817
  48. Scuri M, 2000, J APPL PHYSIOL, V89, P1397, DOI 10.1152/jappl.2000.89.4.1397
  49. Suki B, 2003, AM J RESP CRIT CARE, V168, P516, DOI 10.1164/rccm.200208-908PP
  50. Sumikawa JT, 2010, PHYTOCHEMISTRY, V71, P214, DOI 10.1016/j.phytochem.2009.10.009
  51. Theodoro OA, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020403
  52. Toledo AC, 2013, BRIT J PHARMACOL, V168, P1736, DOI 10.1111/bph.12062
  53. Turk B, 2006, NAT REV DRUG DISCOV, V5, P785, DOI 10.1038/nrd2092
  54. Viegi G, 2007, EUR RESPIR J, V30, P993, DOI 10.1183/09031936.00082507
  55. Weibel Ewald R, 2010, Nihon Kokyuki Gakkai Zasshi, V48, P637
  56. Wu W, 2019, AM J RESP CRIT CARE, V199, P1358, DOI 10.1164/rccm.201808-1543OC
  57. Zijlstra GJ, 2012, EUR RESPIR J, V39, P439, DOI 10.1183/09031936.00017911