Mild to moderate post-COVID-19 alters markers of lymphocyte activation, exhaustion, and immunometabolic responses that can be partially associated by physical activity level- an observational sub-analysis fit-COVID study

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
SILVA, Bruna Spolador de Alencar
PEREIRA, Telmo
MINUZZI, Luciele Guerra
PADILHA, Camila Souza
FIGUEIREDO, Caique
OLEAN-OLIVEIRA, Tiago
SANTOS, Ivete Vera Medeiros dos
MORANO, Ana Elisa von Ah
MARCHIOTO, Osmar
RIBEIRO, Jose Procopio Jabur
Citação
FRONTIERS IN IMMUNOLOGY, v.14, article ID 1212745, 16p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aim: This study aimed to evaluate if physical activity is associated with systemic and cellular immunometabolic responses, in young adults after mild-to-moderate COVID-19 infection. Methods: Mild- to- moderate post-COVID-19 patients (70.50 +/- 43.10 days of diagnosis; age: 29.4 (21.9-34.9) years; BMI: 25.5 +/- 4.3 kg m(2) n = 20) and healthy age-matched controls (age: 29.3 (21.2 - 32.6) years; BMI: 25.4 +/- 4.7 kg m(2); n = 20) were evaluated. Physical activity levels (PAL), body composition, dietary habits, muscular and pulmonary function, mental health, sleep quality, metabolic parameters, immune phenotypic characterization, stimulated whole blood and PBMC culture (cytokine production), mRNA, and mitochondrial respiration in PBMCs were evaluated. Results: The post-COVID-19 group exhibited lower levels of moderate to vigorous physical activity (MVPA) (p = 0.038); therefore, all study comparisons were performed with adjustment for MVPA. Post-COVID-19 impacted the pulmonary function (FEV1, FEV1%pred, FVC, and FVC %pred) compared with the control (p adjusted by MVPA (p adj) <0.05). Post-COVID-19 exhibited lower levels of serum IL-6 (p adj <0.01), whereas it showed higher serum IL-10, triglyceride, leptin, IgG, ACE activity, TNFRSF1A, and PGE(2) (p adj <0.05) levels compared with controls. Post-COVID-19 presented a lower percentage of Treg cells (p adj = 0.03) and altered markers of lymphocyte activation and exhaustion (lower CD28 expression in CD8(+) T cells (p adj = 0.014), whereas CD4(+)T cells showed higher PD1 expression (p adj = 0.037)) compared with the control group. Finally, post- COVID-19 presented an increased LPS-stimulated whole- blood IL-10 concentration (p adj <0.01). When exploring mitochondrial respiration and gene expression in PBMCs, we observed a higher LEAK state value (p adj <0.01), lower OXPHOS activity (complex I) (p adj = 0.04), and expression of the Rev-Erb-alpha clock mRNA after LPS stimulation in the post-COVID-19 patients than in the control (p adj <0.01). Mainly, PAL was associated with changes in IL-10, triglyceride, and leptin levels in the plasma of post-COVID-19 patients. PAL was also associated with modulation of the peripheral frequency of Treg cells and the expression of PD-1 in CD8+ T cells, although it abrogated the statistical effect in the analysis of TNF-alpha and IL-6 production by LPS- and PMA-stimulated PBMC of post-COVID-19 patients. Conclusion: Young adults after mild-to-moderate SARS-CoV-2 infection appeared to have lower physical activity levels, which can be associated with clinical and immunometabolic responses in a complex manner.
Palavras-chave
SARS-CoV-2, physical activity, immune response, metabolism, inflammation, post-acute COVID-19 syndrome
Referências
  1. Ajaz S, 2021, AM J PHYSIOL-CELL PH, V320, pC57, DOI 10.1152/ajpcell.00426.2020
  2. Amir M, 2018, CELL REP, V25, P3733, DOI 10.1016/j.celrep.2018.11.101
  3. Antunes BM, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-70731-6
  4. Baig AM, 2021, J MED VIROL, V93, P2555, DOI 10.1002/jmv.26624
  5. Barry JC, 2018, CYTOKINE, V111, P460, DOI 10.1016/j.cyto.2018.05.035
  6. Barry JC, 2017, MED SCI SPORT EXER, V49, P1631, DOI 10.1249/MSS.0000000000001261
  7. Bell ML, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254347
  8. Bohnacker S, 2022, MUCOSAL IMMUNOL, V15, P515, DOI 10.1038/s41385-021-00482-8
  9. Cheung OY, 2004, HISTOPATHOLOGY, V45, P119, DOI 10.1111/j.1365-2559.2004.01926.x
  10. Cho DH, 2021, J CLIN MED, V10, DOI 10.3390/jcm10071539
  11. Delbressine JM, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18116017
  12. Dorneles GP, 2019, SCAND J MED SCI SPOR, V29, P1755, DOI 10.1111/sms.13506
  13. Espín E, 2023, EBIOMEDICINE, V91, DOI 10.1016/j.ebiom.2023.104552
  14. Ezzatvar Y, 2022, BRIT J SPORT MED, V56, P1188, DOI 10.1136/bjsports-2022-105733
  15. Fabricius D, 2010, J IMMUNOL, V184, P677, DOI 10.4049/jimmunol.0902028
  16. Galán M, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.848886
  17. Guler SA., Pulmonary function and radiological features 4 months after COVID-19: first results from the national prospective observational swiss COVID-19 lung study, DOI [10.1183/13993003.03690-2020, DOI 10.1183/13993003.03690-2020]
  18. Hadjadj J, 2020, SCIENCE, V369, P718, DOI 10.1126/science.abc6027
  19. Higgins V, 2021, CRIT REV CL LAB SCI, V58, P297, DOI 10.1080/10408363.2020.1860895
  20. Holmes E, 2021, J PROTEOME RES, V20, P3315, DOI 10.1021/acs.jproteome.1c00224
  21. Huang CL, 2021, LANCET, V397, P220, DOI 10.1016/S0140-6736(20)32656-8
  22. Huh JY, 2018, ARCH PHARM RES, V41, P14, DOI 10.1007/s12272-017-0994-y
  23. Islam H, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.677008
  24. Kappelmann N, 2021, PSYCHONEUROENDOCRINO, V131, DOI 10.1016/j.psyneuen.2021.105295
  25. Keskinen P, 1997, IMMUNOLOGY, V91, P421, DOI 10.1046/j.1365-2567.1997.00258.x
  26. Khammar A, 2020, IRAN J PUBLIC HEALTH, V49, P1016
  27. Klein Jon, 2022, medRxiv, DOI 10.1101/2022.08.09.22278592
  28. Kovarik JJ., 2022, medRxiv, p2022.07.11.22277499, DOI [10.1101/2022.07.11.22277499, DOI 10.1101/2022.07.11.22277499]
  29. Lam MTY, 2013, NATURE, V498, P511, DOI 10.1038/nature12209
  30. Lira FS, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182413249
  31. Liu WH, 2006, J EXP MED, V203, P1701, DOI 10.1084/jem.20060772
  32. Loretelli C, 2021, JCI INSIGHT, V6, DOI 10.1172/jci.insight.146701
  33. Lu LG, 2021, TRENDS IMMUNOL, V42, P3, DOI 10.1016/j.it.2020.10.012
  34. Matthews CE, 2008, AM J EPIDEMIOL, V167, P875, DOI 10.1093/aje/kwm390
  35. Patterson BK, 2022, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.746021
  36. Pérez-Gómez A, 2021, CELL MOL IMMUNOL, V18, P2128, DOI 10.1038/s41423-021-00728-2
  37. Pesta D, 2012, METHODS MOL BIOL, V810, P25, DOI 10.1007/978-1-61779-382-0_3
  38. Phetsouphanh C, 2022, NAT IMMUNOL, V23, P210, DOI 10.1038/s41590-021-01113-x
  39. Porter C, 2015, AM J PHYSIOL-ENDOC M, V309, pE224, DOI 10.1152/ajpendo.00125.2015
  40. Queiroz MAF, 2022, FRONT CELL INFECT MI, V12, DOI 10.3389/fcimb.2022.922422
  41. Rajamanickam A, 2022, J LEUKOCYTE BIOL, V112, P201, DOI 10.1002/JLB.5COVA0721-392RR
  42. Ramakrishnan RK, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.686029
  43. Ricke-Hoch M, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0255335
  44. Romao PRT, 2022, INT IMMUNOPHARMACOL, V108, DOI 10.1016/j.intimp.2022.108697
  45. Rosa-Neto Jose Cesar, 2022, Exerc Immunol Rev, V28, P29
  46. Sallis R, 2021, BRIT J SPORT MED, V55, P1099, DOI 10.1136/bjsports-2021-104080
  47. Schultheiss C, 2022, CELL REP MED, V3, DOI 10.1016/j.xcrm.2022.100663
  48. Shephard RJ, 2003, SPORTS MED, V33, P261, DOI 10.2165/00007256-200333040-00002
  49. Sieminska I, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.748097
  50. Silva AM, 2012, METHODS MOL BIOL, V810, P7, DOI 10.1007/978-1-61779-382-0_2
  51. Suzuki K, 2019, BIOMOLECULES, V9, DOI 10.3390/biom9060223
  52. Tavakol Z, 2023, J PUBLIC HEALTH-HEID, V31, P267, DOI 10.1007/s10389-020-01468-9
  53. Tomás MT, 2018, FRONT MED-LAUSANNE, V4, DOI 10.3389/fmed.2017.00244
  54. van de Weert-van Leeuwen PB, 2013, RESP RES, V14, DOI 10.1186/1465-9921-14-32
  55. Walsh NP, 2011, EXERC IMMUNOL REV, V17, P6
  56. You TJ, 2013, SPORTS MED, V43, P243, DOI 10.1007/s40279-013-0023-3