Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGF beta 1-induced macrophages

Carregando...
Imagem de Miniatura
Citações na Scopus
41
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY-BLACKWELL
Autores
TEIXEIRA, Veronica Rodrigues
COSTA, Fabricio Falconi
NONOGAKI, Suely
LIU, Fu-Tong
CAMARGO, Anamaria Aranha
Citação
CANCER MEDICINE, v.3, n.2, p.201-214, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGF beta 1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68(+) -cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68(+) cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGF beta 1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGF beta 1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGF beta 1, increased Arginase I protein levels and galectin-3 expression in WTBMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGF beta 1 signaling pathways.
Palavras-chave
Angiogenesis, galectin-3, melanoma, tumor microenvironment
Referências
  1. Ahmed H, 2007, BIOCHEM BIOPH RES CO, V358, P241, DOI 10.1016/j.bbrc.2007.04.114
  2. Ahmed H, 2009, TRANSL ONCOL, V2, P146, DOI 10.1593/tlo.09118
  3. Ahmed H, 2010, BIOMARKERS CANC, V2010, P17
  4. BAIRD A, 1986, BIOCHEM BIOPH RES CO, V138, P476, DOI 10.1016/0006-291X(86)90305-0
  5. Brown ER, 2012, EUR J CANCER, V48, P865, DOI 10.1016/j.ejca.2011.09.003
  6. Clark SJ, 1997, GENE, V195, P67, DOI 10.1016/S0378-1119(97)00164-9
  7. Correa M, 2005, INT J CANCER, V114, P356, DOI 10.1002/ijc.20673
  8. Costa FF, 2004, ONCOGENE, V23, P1481, DOI 10.1038/sj.onc.1207263
  9. D'Haene N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067029
  10. Davidson PJ, 2002, GLYCOBIOLOGY, V12, P329, DOI 10.1093/glycob/12.5.329
  11. Derynck R, 2001, NAT GENET, V29, P117, DOI 10.1038/ng1001-117
  12. de Souza GA, 2006, PROTEOMICS, V6, P1460, DOI 10.1002/pmic.200500243
  13. Doverhag C, 2010, NEUROBIOL DIS, V38, P36, DOI 10.1016/j.nbd.2009.12.024
  14. Dragomir ACD, 2012, J IMMUNOL, V189, P5934, DOI 10.4049/jimmunol.1201851
  15. Gong D., 2012, BMC IMMUNOL, V15, P31
  16. Happel C, 2008, J LEUKOCYTE BIOL, V83, P956, DOI 10.1189/jlb.1007685
  17. Henderson NC, 2006, P NATL ACAD SCI USA, V103, P5060, DOI 10.1073/pnas.0511167103
  18. Hsu DK, 2000, AM J PATHOL, V156, P1073, DOI 10.1016/S0002-9440(10)64975-9
  19. Hung SP, 2012, CELL TRANSPLANT, V22, P1869
  20. Javelaud D, 2008, PIGM CELL MELANOMA R, V21, P123, DOI 10.1111/j.1755-148X.2008.00450.x
  21. Jia WZ, 2013, AM J PATHOL, V182, P1821, DOI 10.1016/j.ajpath.2013.01.017
  22. Kamper P, 2011, HAEMATOL-HEMATOL J, V96, P269, DOI 10.3324/haematol.2010.031542
  23. LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
  24. Laskin DL, 2011, ANNU REV PHARMACOL, V51, P267, DOI [10.1146/annurev.pharmtox.010909.105812, 10.1146/annurev.pharmtox.013909.105812]
  25. Liu FT, 2005, NAT REV CANCER, V5, P29, DOI 10.1038/nrc1527
  26. MacKinnon AC, 2008, J IMMUNOL, V180, P2650
  27. Markowska AI, 2010, J EXP MED, V207, P1981, DOI 10.1084/jem.20090121
  28. Markowska AI, 2011, J BIOL CHEM, V286, P29913, DOI 10.1074/jbc.M111.226423
  29. Molognoni F, 2011, EPIGENETICS-US, V6, P451, DOI 10.4161/epi.6.4.14917
  30. MOZDZANOWSKI J, 1992, Electrophoresis, V13, P59, DOI 10.1002/elps.1150130112
  31. Nangia-Makker P, 2007, CANCER RES, V67, P11760, DOI 10.1158/0008-5472.CAN-07-3233
  32. Nangia-Makker P, 2000, AM J PATHOL, V156, P899, DOI 10.1016/S0002-9440(10)64959-0
  33. Oba-Shinjo SM, 2006, NEOPLASIA, V8, P231, DOI 10.1593/neo.05781
  34. Oliveira FL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019216
  35. Onuchic AC, 2012, MEDIAT INFLAMM, DOI 10.1155/2012/175408
  36. Paik S, 2004, NEW ENGL J MED, V351, P2817, DOI 10.1056/NEJMoa041588
  37. Prieto VG, 2006, CLIN CANCER RES, V12, P6709, DOI 10.1158/1078-0432.CCR-06-0758
  38. Ruebel KH, 2005, CANCER RES, V65, P1136, DOI 10.1158/0008-5472.CAN-04-3578
  39. Satelli A, 2011, CANCER LETT, V301, P38, DOI 10.1016/j.canlet.2010.10.027
  40. Solinas G, 2009, J LEUKOCYTE BIOL, V86, P1065, DOI 10.1189/jlb.0609385
  41. TOWBIN H, 1979, P NATL ACAD SCI USA, V76, P4350, DOI 10.1073/pnas.76.9.4350
  42. Vandesompele J., 2002, GENOME BIOL, V18, P3, DOI 10.1186/GB-2002-3-7-RESEARCH0034
  43. Watnick RS, 2012, CSH PERSPECT MED, V2, DOI 10.1101/cshperspect.a006676
  44. WISEMAN DM, 1988, BIOCHEM BIOPH RES CO, V157, P793, DOI 10.1016/S0006-291X(88)80319-X