Pan-cancer analysis reveals that CTC1-STN1-TEN1 (CST) complex may have a key position in oncology

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorSANTOS, Gabriel Arantes dos
dc.contributor.authorVIANA, Nayara I.
dc.contributor.authorPIMENTA, Ruan
dc.contributor.authorCAMARGO, Juliana Alves de
dc.contributor.authorGUIMARAES, Vanessa R.
dc.contributor.authorROMAO, Poliana
dc.contributor.authorCANDIDO, Patricia
dc.contributor.authorGHAZARIAN, Vitoria
dc.contributor.authorREIS, Sabrina T.
dc.contributor.authorLEITE, Katia Ramos Moreira
dc.contributor.authorSROUGI, Miguel
dc.date.accessioned2022-08-12T17:00:11Z
dc.date.available2022-08-12T17:00:11Z
dc.date.issued2022
dc.description.abstractTelomere dysfunction is one of the hallmarks of cancer, which puts telomere-associated genes in a prominent position in oncology. The CTC1-STN1-TEN1 (CST) complex is vital for telomere maintenance and participates in several steps of DNA metabolism, such as repair and replication, essential functions for malignant cells. Despite this, little is known about these genes in cancer biology. Here, using bioinformatics tools, we performed a study in 33 cancer types and over 10,0 0 0 TCGA samples analyzing the role of the CST complex in cancer. We obtained the somatic landscape and gene expression patterns of each of the subunits of the complex studied. Furthermore, we show that CST is important for genetic stability and nucleic acid metabolism in cancer. We identify possible interactors, transcription factors, and microRNAs associated with CST and two drugs that may disrupt their pathways. In addition, we show that CST gene expression is associated with cancer survival and recurrence in several tumor types. Finally, we show negative and positive correlations between immune checkpoint genes and CST in different types of cancer. With this work, we corroborate the importance of these genes in cancer biology and open perspectives for their use in other works in the field.eng
dc.description.indexMEDLINEeng
dc.identifier.citationCANCER GENETICS, v.262, p.80-90, 2022
dc.identifier.doi10.1016/j.cancergen.2022.01.006
dc.identifier.eissn2210-7770
dc.identifier.issn2210-7762
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/48233
dc.language.isoeng
dc.publisherELSEVIER SCIENCE INCeng
dc.relation.ispartofCancer Genetics
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright ELSEVIER SCIENCE INCeng
dc.subjectPan-cancereng
dc.subjectCancer survivaleng
dc.subjectGenetic stabilityeng
dc.subjectNucleic acid metabolismeng
dc.subjectBioinformaticseng
dc.subject.othertelomere lengtheng
dc.subject.othercarcinomaeng
dc.subject.othercellseng
dc.subject.otherdnaeng
dc.subject.otherhydroxyureaeng
dc.subject.othermicrornaeng
dc.subject.otherroleseng
dc.subject.wosOncologyeng
dc.subject.wosGenetics & Heredityeng
dc.titlePan-cancer analysis reveals that CTC1-STN1-TEN1 (CST) complex may have a key position in oncologyeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.citation.scopus7
hcfmusp.contributor.author-fmusphcGABRIEL ARANTES GALVAO DIAS DOS SANTOS
hcfmusp.contributor.author-fmusphcNAYARA IZABEL VIANA MOURA
hcfmusp.contributor.author-fmusphcRUAN CESAR APARECIDO PIMENTA
hcfmusp.contributor.author-fmusphcJULIANA ALVES DE CAMARGO
hcfmusp.contributor.author-fmusphcVANESSA RIBEIRO GUIMARAES SCHREITER
hcfmusp.contributor.author-fmusphcPOLIANA ROMAO DA SILVA
hcfmusp.contributor.author-fmusphcPATRICIA RODRIGUES CANDIDO
hcfmusp.contributor.author-fmusphcVITORIA GHAZARIAN NUNES
hcfmusp.contributor.author-fmusphcSABRINA THALITA DOS REIS FARIA
hcfmusp.contributor.author-fmusphcKATIA RAMOS MOREIRA LEITE
hcfmusp.contributor.author-fmusphcMIGUEL SROUGI
hcfmusp.description.beginpage80
hcfmusp.description.endpage90
hcfmusp.description.volume262
hcfmusp.origemWOS
hcfmusp.origem.pubmed35134616
hcfmusp.origem.scopus2-s2.0-85124008839
hcfmusp.origem.wosWOS:000803751800014
hcfmusp.publisher.cityNEW YORKeng
hcfmusp.publisher.countryUSAeng
hcfmusp.relation.referenceAcunzo Mario, 2015, Adv Biol Regul, V57, P1, DOI 10.1016/j.jbior.2014.09.013eng
hcfmusp.relation.referenceAmir M, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9020359eng
hcfmusp.relation.referenceAyers M, 2017, J CLIN INVEST, V127, P2930, DOI 10.1172/JCI91190eng
hcfmusp.relation.referenceBarazas M, 2018, CELL REP, V23, P2107, DOI 10.1016/j.celrep.2018.04.046eng
hcfmusp.relation.referenceBardou P, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-293eng
hcfmusp.relation.referenceBENNETT LL, 1955, CANCER RES, V15, P485eng
hcfmusp.relation.referenceBernal A, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19010294eng
hcfmusp.relation.referenceBhattacharjee A, 2017, NUCLEIC ACIDS RES, V45, P12311, DOI 10.1093/nar/gkx878eng
hcfmusp.relation.referenceCalvo O, 2019, NUCLEIC ACIDS RES, V47, P6250, DOI 10.1093/nar/gkz279eng
hcfmusp.relation.referenceCantisani C, 2019, DERMATOL THER, V32, DOI 10.1111/dth.13043eng
hcfmusp.relation.referenceCerami E, 2012, CANCER DISCOV, V2, P401, DOI 10.1158/2159-8290.CD-12-0095eng
hcfmusp.relation.referenceChastain M, 2016, CELL REP, V16, P1300, DOI 10.1016/j.celrep.2016.06.077eng
hcfmusp.relation.referenceChen M, 2020, DIGEST DIS SCI, V65, P2442, DOI 10.1007/s10620-019-05916-9eng
hcfmusp.relation.referenceCui XT, 2020, GENOMICS, V112, P3958, DOI 10.1016/j.ygeno.2020.06.044eng
hcfmusp.relation.referenceDe Lange T, 2005, COLD SH Q B, V70, P197, DOI 10.1101/sqb.2005.70.032eng
hcfmusp.relation.referenceDonate LE, 2011, PHILOS T R SOC B, V366, P76, DOI 10.1098/rstb.2010.0291eng
hcfmusp.relation.referencedos Santos GA, 2021, MOL BIOL RES COMMUN, V10, P121, DOI 10.22099/mbrc.2021.40106.1607eng
hcfmusp.relation.referencedos Santos GA, 2021, MED HYPOTHESES, V150, DOI 10.1016/j.mehy.2021.110566eng
hcfmusp.relation.referenceFang X, 2019, EXP CELL RES, V376, P39, DOI 10.1016/j.yexcr.2019.01.013eng
hcfmusp.relation.referenceFarazi PA, 2003, CANCER RES, V63, P5021eng
hcfmusp.relation.referenceFeng XY, 2017, NUCLEIC ACIDS RES, V45, P4281, DOI 10.1093/nar/gkx125eng
hcfmusp.relation.referenceFrankel T, 2017, ADV EXP MED BIOL, V1036, P51, DOI 10.1007/978-3-319-67577-0_4eng
hcfmusp.relation.referenceGao JJ, 2013, SCI SIGNAL, V6, DOI 10.1126/scisignal.2004088eng
hcfmusp.relation.referenceHan P, 2019, INT J CLIN ONCOL, V24, P1042, DOI 10.1007/s10147-019-01442-weng
hcfmusp.relation.referenceHuang CH, 2017, EXP CELL RES, V355, P95, DOI 10.1016/j.yexcr.2017.03.058eng
hcfmusp.relation.referenceHuang C, 2020, BIOMED RES INT, V2020, DOI 10.1155/2020/8824519eng
hcfmusp.relation.referenceHutter C, 2018, CELL, V173, P283, DOI 10.1016/j.cell.2018.03.042eng
hcfmusp.relation.referenceMontero JJ, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12534eng
hcfmusp.relation.referenceJourquin J, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-S8-S20eng
hcfmusp.relation.referenceLi TW, 2020, NUCLEIC ACIDS RES, V48, pW509, DOI 10.1093/nar/gkaa407eng
hcfmusp.relation.referenceLiang Z, 2017, MOL CANCER, V16, DOI 10.1186/s12943-017-0664-1eng
hcfmusp.relation.referenceLiao YX, 2019, NUCLEIC ACIDS RES, V47, pW199, DOI 10.1093/nar/gkz401eng
hcfmusp.relation.referenceLiu FY, 2017, MOL CANCER, V16, DOI 10.1186/s12943-017-0698-4eng
hcfmusp.relation.referenceLiu JN, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.02048eng
hcfmusp.relation.referenceLiu SB, 2019, COMB CHEM HIGH T SCR, V22, P379, DOI 10.2174/1386207322666190704095602eng
hcfmusp.relation.referenceLiu Y, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.649328eng
hcfmusp.relation.referenceLu WS, 2013, EXP CELL RES, V319, P133, DOI 10.1016/j.yexcr.2012.09.005eng
hcfmusp.relation.referenceLuo YM, 2014, INT J MOL MED, V33, P1484, DOI 10.3892/ijmm.2014.1721eng
hcfmusp.relation.referenceLuo ZH, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa441eng
hcfmusp.relation.referenceLyu XX, 2021, DNA REPAIR, V102, DOI 10.1016/j.dnarep.2021.103104eng
hcfmusp.relation.referenceMadaan K, 2012, EXPERT REV ANTICANC, V12, P19, DOI [10.1586/ERA.11.175, 10.1586/era.11.175]eng
hcfmusp.relation.referenceMiller ET, 2020, BMC CANCER, V20, DOI 10.1186/s12885-020-06817-1eng
hcfmusp.relation.referenceMiyake Y, 2009, MOL CELL, V36, P193, DOI 10.1016/j.molcel.2009.08.009eng
hcfmusp.relation.referenceMorais M, 2020, CANCER MANAG RES, V12, P1669, DOI 10.2147/CMAR.S211225eng
hcfmusp.relation.referenceNersisyan L, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.662464eng
hcfmusp.relation.referencePatel Trupti Nv, 2015, Asian Pac J Cancer Prev, V16, P3085eng
hcfmusp.relation.referencePhelan CM, 2017, NAT GENET, V49, P680, DOI 10.1038/ng.3826eng
hcfmusp.relation.referenceQin S, 2019, MOL CANCER, V18, DOI 10.1186/s12943-019-1091-2eng
hcfmusp.relation.referenceRacioppi M, 2019, EUR UROL ONCOL, V2, P576, DOI 10.1016/j.euo.2018.08.032eng
hcfmusp.relation.referenceRice C, 2016, COMPUT STRUCT BIOTEC, V14, P161, DOI 10.1016/j.csbj.2016.04.002eng
hcfmusp.relation.referenceRu YB, 2014, NUCLEIC ACIDS RES, V42, DOI 10.1093/nar/gku631eng
hcfmusp.relation.referenceRupaimoole R, 2017, NAT REV DRUG DISCOV, V16, P203, DOI 10.1038/nrd.2016.246eng
hcfmusp.relation.referenceStewart JA, 2018, FRONT BIOSCI-LANDMRK, V23, P1564, DOI 10.2741/4661eng
hcfmusp.relation.referenceSymonds P, 2004, COCHRANE DB SYST REVeng
hcfmusp.relation.referenceSzklarczyk D, 2019, NUCLEIC ACIDS RES, V47, pD607, DOI 10.1093/nar/gky1131eng
hcfmusp.relation.referenceTang ZF, 2019, NUCLEIC ACIDS RES, V47, pW556, DOI 10.1093/nar/gkz430eng
hcfmusp.relation.referenceTomczak Katarzyna, 2015, Contemp Oncol (Pozn), V19, pA68, DOI 10.5114/wo.2014.47136eng
hcfmusp.relation.referencevan Dam S, 2018, BRIEF BIOINFORM, V19, P575, DOI 10.1093/bib/bbw139eng
hcfmusp.relation.referencevan Dam S, 2015, NUCLEIC ACIDS RES, V43, pD1124, DOI 10.1093/nar/gku1042eng
hcfmusp.relation.referenceWang F, 2014, CELL CYCLE, V13, P3488, DOI 10.4161/15384101.2014.964100eng
hcfmusp.relation.referenceWang Y, 2018, NUCLEIC ACIDS RES, V46, P3981, DOI 10.1093/nar/gky114eng
hcfmusp.relation.referenceWu CW, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22147374eng
hcfmusp.relation.referenceZhang MM, 2019, NUCLEIC ACIDS RES, V47, P5243, DOI 10.1093/nar/gkz264eng
hcfmusp.relation.referenceZhu TY, 2015, BIOMED PHARMACOTHER, V75, P123, DOI 10.1016/j.biopha.2015.07.023eng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublication0573cc80-db5e-4b2d-a071-3f41f621f1b5
relation.isAuthorOfPublication32f63bee-3f86-4e8d-b307-f29f080dd7b4
relation.isAuthorOfPublication622b95d5-7600-4a54-a1bc-204957b81985
relation.isAuthorOfPublicatione031ff5f-0add-425a-b7f0-10c3300ac1ad
relation.isAuthorOfPublication49034ff4-143c-47b8-b981-e30258c05ee7
relation.isAuthorOfPublication856017c9-c3a5-4430-8e01-34d1874baaf2
relation.isAuthorOfPublication51351613-6165-4ef0-ade2-e9a3bf20e595
relation.isAuthorOfPublicationb1400992-b464-4e0a-8594-3a248f2239c9
relation.isAuthorOfPublication73be4bca-f8ad-443f-90b5-10e2e62b1e27
relation.isAuthorOfPublication23772d3b-0da7-472f-8d56-e6312dbf95c1
relation.isAuthorOfPublicationcff561dd-5732-4af5-abe9-538da0cdf4d2
relation.isAuthorOfPublication.latestForDiscovery0573cc80-db5e-4b2d-a071-3f41f621f1b5
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_SANTOS_Pancancer_analysis_reveals_that_CTC1STN1TEN1_CST_complex_may_2022.PDF
Tamanho:
3.08 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)