Dynamic Mechanical Interactions Between Neighboring Airspaces Determine Cyclic Opening and Closure in Injured Lung

Carregando...
Imagem de Miniatura
Citações na Scopus
31
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
BROCHE, Ludovic
PERCHIAZZI, Gaetano
PORRA, Liisa
TANNOIA, Angela
PELLEGRINI, Mariangela
DEROSA, Savino
SINDACO, Alessandra
DEGRUGILLIERS, Loic
LARSSON, Anders
Citação
CRITICAL CARE MEDICINE, v.45, n.4, p.687-694, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: Positive pressure ventilation exposes the lung to mechanical stresses that can exacerbate injury. The exact mechanism of this pathologic process remains elusive. The goal of this study was to describe recruitment/derecruitment at acinar length scales over short-time frames and test the hypothesis that mechanical interdependence between neighboring lung units determines the spatial and temporal distributions of recruitment/derecruitment, using a computational model. Design: Experimental animal study. Setting: International synchrotron radiation laboratory. Subjects: Four anesthetized rabbits, ventilated in pressure controlled mode. Interventions: The lung was consecutively imaged at - 1.5-minute intervals using phase-contrast synchrotron imaging, at positive end expiratory pressures of 12, 9, 6, 3, and 0 cm H2O before and after lavage and mechanical ventilation induced injury. The extent and spatial distribution of recruitment/derecruitment was analyzed by subtracting subsequent images. In a realistic lung structure, we implemented a mechanistic model in which each unit has individual pressures and speeds of opening and closing. Derecruited and recruited lung fractions (F-derecruaed, F-recruited) were computed based on the comparison of the aerated volumes at successive time points. Measurements and Main Results: Alternative recruitment/derecruitment occurred in neighboring alveoli over short-time scales in all tested positive end-expiratory pressure levels and despite stable pressure controlled mode. The computational model reproduced this behavior only when parenchymal interdependence between neighboring acini was accounted for. Simulations closely mimicked the experimental magnitude of F-derecruited and F-recruited when mechanical interdependence was included, while its exclusion gave F-recruited values of zero at positive end -expiratory pressure greater than or equal to 3 cm H2O. Conclusions: These findings give further insight into the microscopic behavior of the injured lung and provide a means of testing protective-ventilation strategies to prevent recruitment/derecruitment and subsequent lung damage. (Crit Care Med 2017; 45:687-694)
Palavras-chave
acute respiratory distress syndrome, assisted ventilation, imaging/computed tomography, pulmonary oedema, synchrotron
Referências
  1. Adler A, 2000, ANN BIOMED ENG, V28, P309, DOI 10.1114/1.270
  2. BACHOFEN H, 1993, AM REV RESPIR DIS, V147, P989
  3. Bates JHT, 2002, J APPL PHYSIOL, V93, P705, DOI 10.1152/japplphysiol.01274.2001
  4. Bellardine CL, 2006, CRIT CARE MED, V34, P439, DOI 10.1097/01.CCM.0000196208.01682.87
  5. Bliznakova K, 2015, COMPUT BIOL MED, V61, P62, DOI 10.1016/j.compbiomed.2015.03.017
  6. Denny E, 2006, J BIOMECH, V39, P652, DOI 10.1016/j.jbiomech.2005.01.010
  7. dos Santos CC, 2000, INTENS CARE MED, V26, P638, DOI 10.1007/s001340051217
  8. DREYFUSS D, 1988, AM REV RESPIR DIS, V137, P1159
  9. Hantos Z, 2004, J APPL PHYSIOL, V97, P592, DOI 10.1152/japplphysiol.01402.2003
  10. Heil M, 2008, RESP PHYSIOL NEUROBI, V163, P214, DOI 10.1016/j.resp.2008.05.013
  11. Hubmayr RD, 2002, AM J RESP CRIT CARE, V165, P1647, DOI 10.1164/rccm.2001080-01CP
  12. Kamm RD, 1990, APPL MECH REV, V43, pS92
  13. Ma BS, 2010, ANN BIOMED ENG, V38, P3466, DOI 10.1007/s10439-010-0095-2
  14. MACKLEM PT, 1970, RESP PHYSIOL, V8, P191, DOI 10.1016/0034-5687(70)90015-0
  15. Makiyama AM, 2014, RESP PHYSIOL NEUROBI, V201, P101, DOI 10.1016/j.resp.2014.06.017
  16. MEAD J, 1970, J APPL PHYSIOL, V28, P596
  17. MUSCEDERE JG, 1994, AM J RESP CRIT CARE, V149, P1327
  18. Peck MD, 2009, J BURN CARE RES, V30, P172, DOI 10.1097/BCR.0b013e3181923c32
  19. Slutsky AS, 2013, NEW ENGL J MED, V369, P2126, DOI 10.1056/NEJMra1208707
  20. Slutsky AS, 1999, CHEST, V116, p9S, DOI 10.1378/chest.116.suppl_1.9S-a
  21. Smith BJ, 2015, J APPL PHYSIOL, V118, P932, DOI 10.1152/japplphysiol.00902.2014
  22. Smith BJ, 2013, IEEE T BIO-MED ENG, V60, P3449, DOI 10.1109/TBME.2013.2267151
  23. Smith BJ, 2013, ANN BIOMED ENG, V41, P527, DOI 10.1007/s10439-012-0693-2
  24. Taniguchi LU, 2010, J BRAS PNEUMOL, V36, P363, DOI 10.1590/S1806-37132010000300015
  25. Terragni PP, 2007, AM J RESP CRIT CARE, V175, P160, DOI 10.1164/rccm.200607-915OC
  26. [Anonymous], 2000, NEW ENGL J MED, V342, P1301, DOI 10.1056/NEJM200005043421801
  27. Victorino JA, 2004, AM J RESP CRIT CARE, V169, P791, DOI 10.1164/rccm.200301-133OC
  28. Wilkins SW, 1996, NATURE, V384, P335, DOI 10.1038/384335a0