Alternative drugs against multiresistant Gram-negative bacteria

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Citação
JOURNAL OF GLOBAL ANTIMICROBIAL RESISTANCE, v.23, p.33-37, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: Enterobacterales and other non-fermenting Gram-negative bacteria have become a threat worldwide owing to the frequency of multidrug resistance in these pathogens. On the other hand, efficacious therapeutic options are quickly diminishing. The aims of this study were to describe the susceptibility of 50 multiresistant Gram-negative bacteria, mostly pan-resistant, against old and less-used antimicrobial drugs and to investigate the presence of antimicrobial resistance genes. Methods: A total of 50 genetically distinct isolates were included in this study, including 14 Acinetobacter baumannii (belonging to ST79, ST317, ST835 and ST836), 1 Pseudomonas aeruginosa (ST245), 8 Serratia marcescens and 27 Klebsiella pneumoniae (belonging to STII, ST340, ST258, ST16, ST23, ST25, ST101, ST234, ST437 and ST442). The isolates were submitted to antimicrobial susceptibility testing and whole-genome sequencing to evaluate lineages and resistance genes. Results: Our results showed that some strains harboured carbapenemase genes, e.g. bla(K)(PC-)(2) (28/50; 56%) and bla(OXA-23) (11/50; 22%), and other resistance genes encoding aminoglycoside-modifying enzymes (49/50; 98%). Susceptibility rates to tigecycline (96%) in all species (except P. aeruginosa), to minocycline (100%) and doxycycline (93%) in A. baumannii, to ceftazidime/avibactam in S. marcescens (100%) and K. pneumoniae (96%), and to fosfomycin in S. marcescens (88%) were high. Chloramphenicol and quinolones (6% susceptibility each) did not perform well, making their use in an empirical scenario unlikely. Conclusions: This study involving genetically distinct bacteria showed promising results for tigecycline for all Gram-negative bacteria (except P. aeruginosa), and there was good activity of minocycline against A. baumannii, ceftazidime/avibactam against Enterobacterales, and fosfomycin against S. marcescens. (C) 2020 The Author(s).
Palavras-chave
Multiresistance, Whole-genome sequencing, Alternative antimicrobials, Carbapenem resistance, Gram-negative, Polymyxin resistance
Referências
  1. Bogaty C, 2018, ANTIMICROB RESIST IN, V7, DOI 10.1186/s13756-018-0437-7
  2. Clinical and Laboratory Standards Institute (CLSI), 2018, M100 CLSI S
  3. De Angelis G, 2019, J ANTIMICROB CHEMOTH, V74, P24, DOI 10.1093/jac/dky532
  4. Diekema DJ, 2019, ANTIMICROB AGENTS CH, V63, DOI [10.1128/AAC.00355-19, 10.1128/aac.00355-19]
  5. Durand GA, 2019, INT J ANTIMICROB AG, V53, P371, DOI 10.1016/j.ijantimicag.2018.11.010
  6. European Committee on Antimicrobial Susceptibility Testing (EUCAST), 2018, BREAKP TABL INT MICS
  7. Falagas ME, 2015, INT J ANTIMICROB AG, V46, P231, DOI 10.1016/j.ijantimicag.2015.04.002
  8. Guimaraes T, 2019, ANTIMICROB AGENTS CH, V63, DOI 10.1128/AAC.00528-19
  9. Harris PNA, 2019, JAMA-J AM MED ASSOC, V321, P2370, DOI 10.1001/jama.2019.6706
  10. Lashinsky JN, 2017, INFECT DIS THER, V6, P199, DOI 10.1007/s40121-017-0153-2
  11. Li J, 2017, MICROB DRUG RESIST, V23, P982, DOI 10.1089/mdr.2016.0279
  12. Marshall S, 2017, ANTIMICROB AGENTS CH, V61, DOI 10.1128/AAC.02243-16
  13. Matuschek E, 2018, CLIN MICROBIOL INFEC, V24, P865, DOI 10.1016/j.cmi.2017.11.020
  14. Moffatt JH, 2019, ADV EXP MED BIOL, V1145, P55, DOI 10.1007/978-3-030-16373-0_5
  15. Sandner-Miranda L, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.00828
  16. Serio Alisa W, 2018, EcoSal Plus, V8, DOI 10.1128/ecosalplus.ESP-0002-2018
  17. Shankar C, 2017, MICROB DRUG RESIST, V23, P437, DOI 10.1089/mdr.2016.0043
  18. Williams PCM, 2019, J MED MICROBIOL, V68, P711, DOI 10.1099/jmm.0.000973
  19. Zerbino DR, 2008, GENOME RES, V18, P821, DOI 10.1101/gr.074492.107