SARS-CoV-2 Detection and Culture in Different Biological Specimens from Immunocompetent and Immunosuppressed COVID-19 Patients Infected with Two Different Viral Strains

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
VIRUSES-BASEL, v.15, n.6, article ID 1270, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction-The dynamics of SARS-CoV-2 shedding and replication in humans remain incompletely understood. Methods-We analyzed SARS-CoV-2 shedding from multiple sites in individuals with an acute COVID-19 infection by weekly sampling for five weeks in 98 immunocompetent and 25 immunosuppressed individuals. Samples and culture supernatants were tested via RT-PCR for SARS-CoV-2 to determine viral clearance rates and in vitro replication. Results-A total of 2447 clinical specimens were evaluated, including 557 nasopharyngeal swabs, 527 saliva samples, 464 urine specimens, 437 anal swabs and 462 blood samples. The SARS-CoV-2 genome sequences at each site were classified as belonging to the B.1.128 (ancestral strain) or Gamma lineage. SARS-CoV-2 detection was highest in nasopharyngeal swabs regardless of the virus strain involved or the immune status of infected individuals. The duration of viral shedding varied between clinical specimens and individual patients. Prolonged shedding of potentially infectious virus varied from 10 days up to 191 days, and primarily occurred in immunosuppressed individuals. Virus was isolated in culture from 18 nasal swab or saliva samples collected 10 or more days after onset of disease. Conclusions-Our findings indicate that persistent SARS-CoV-2 shedding may occur in both competent or immunosuppressed individuals, at multiple clinical sites and in a minority of subjects is capable of in vitro replication.
Palavras-chave
SARS-CoV-2, infectiousness, cell culture, viral shedding, viral load dynamics, persistence, COVID-19
Referências
  1. Araujo DB, 2020, MEM I OSWALDO CRUZ, V115, DOI 10.1590/0074-02760200342
  2. Avanzato VA, 2020, CELL, V183, P1901, DOI 10.1016/j.cell.2020.10.049
  3. Blanco-Melo D, 2020, CELL, V181, P1036, DOI 10.1016/j.cell.2020.04.026
  4. Candido DS, 2020, SCIENCE, V369, P1255, DOI 10.1126/science.abd2161
  5. Cerrada-Romero C, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-11439-7
  6. Cevik M, 2021, LANCET MICROBE, V2, pE13, DOI 10.1016/S2666-5247(20)30172-5
  7. Chen LT, 2021, J MOL DIAGN, V23, P10, DOI 10.1016/j.jmoldx.2020.10.007
  8. Choi B, 2020, NEW ENGL J MED, V383, P2291, DOI 10.1056/NEJMc2031364
  9. Christensen J, 2020, TRANSPL P, V52, P2637, DOI 10.1016/j.transproceed.2020.08.042
  10. Chu DKW, 2020, CLIN CHEM, V66, P549, DOI 10.1093/clinchem/hvaa029
  11. Colavita F, 2020, ANN INTERN MED, V173, P242, DOI 10.7326/M20-1176
  12. Corman VM, 2020, EUROSURVEILLANCE, V25, P23, DOI 10.2807/1560-7917.ES.2020.25.3.2000045
  13. Cunha MD, 2021, FRONT MED-LAUSANNE, V8, DOI 10.3389/fmed.2021.760170
  14. Dadras O, 2022, IMMUN INFLAMM DIS, V10, DOI 10.1002/iid3.580
  15. Dergham J, 2021, J CLIN MED, V10, DOI 10.3390/jcm10122696
  16. Emery SL, 2004, EMERG INFECT DIS, V10, P311, DOI 10.3201/eid1002.030759
  17. Fajnzylber J, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19057-5
  18. Faria NR, 2021, SCIENCE, V372, P815, DOI [10.1101/2021.02.26.21252554, 10.1126/science.abh2644, 10.1126/science.abh2644Article]
  19. Folgueira MD, 2021, CLIN MICROBIOL INFEC, V27, P886, DOI 10.1016/j.cmi.2021.02.014
  20. Ge XY, 2013, NATURE, V503, P535, DOI 10.1038/nature12711
  21. Hahn MW, 2004, RES MICROBIOL, V155, P688, DOI 10.1016/j.resmic.2004.05.003
  22. Jeong HW, 2020, CLIN MICROBIOL INFEC, V26, P1520, DOI 10.1016/j.cmi.2020.07.020
  23. Kawasuji H, 2022, J MED VIROL, V94, P147, DOI 10.1002/jmv.27282
  24. Ke RA, 2022, NAT MICROBIOL, V7, P640, DOI 10.1038/s41564-022-01105-z
  25. Kim MC, 2021, NEW ENGL J MED, V384, P671, DOI 10.1056/NEJMc2027040
  26. Leal FE, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2020-042745
  27. Leblanc JF, 2020, TRANSFUSION, V60, P3046, DOI 10.1111/trf.16056
  28. Mendes-Correa MC, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0256357
  29. Morone G, 2020, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.00562
  30. Neant N, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2017962118
  31. Nicolete VC, 2022, EMERG INFECT DIS, V28, P709, DOI 10.3201/eid2803.211993
  32. O'Connell P, 2020, HUM VACC IMMUNOTHER, V16, P2980, DOI 10.1080/21645515.2020.1802974
  33. Okita Y, 2022, INFLAMM REGEN, V42, DOI 10.1186/s41232-022-00205-x
  34. Peng L, 2020, J MED VIROL, V92, P1676, DOI 10.1002/jmv.25936
  35. Perez-Bartolome F, 2021, Arch Soc Esp Oftalmol (Engl Ed), V96, P32, DOI 10.1016/j.oftal.2020.07.020
  36. Lima LRP, 2017, MEM I OSWALDO CRUZ, V112, P220, DOI 10.1590/0074-02760160354
  37. Puhach O, 2023, NAT REV MICROBIOL, V21, P147, DOI 10.1038/s41579-022-00822-w
  38. Rambaut A, 2020, NAT MICROBIOL, V5, P1403, DOI 10.1038/s41564-020-0770-5
  39. Roshandel MR, 2020, CELL MOL BIOL, V66, P148, DOI 10.14715/cmb/2020.66.6.26
  40. Sabino EC, 2021, LANCET, V397, P452, DOI 10.1016/S0140-6736(21)00183-5
  41. Sun J, 2020, EMERG MICROBES INFEC, V9, P991, DOI 10.1080/22221751.2020.1760144
  42. Sung A, 2022, FRONT CELL INFECT MI, V12, DOI 10.3389/fcimb.2022.804175
  43. Tallmadge RL, 2022, MICROBIOL SPECTR, V10, DOI 10.1128/spectrum.02264-21
  44. United States Centers for Disease Control and Prevention, END IS PREC PEOPL CO
  45. Wang WL, 2020, JAMA-J AM MED ASSOC, V323, P1843, DOI 10.1001/jama.2020.3786
  46. Wolfel R, 2020, NATURE, V581, P465, DOI 10.1038/s41586-020-2196-x
  47. Xiao F, 2020, EMERG INFECT DIS, V26, P1920, DOI 10.3201/eid2608.200681
  48. Yan DY, 2021, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.652842
  49. Yang B, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-23621-y
  50. Zheng SF, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1443