Discovery of Cucumis melo endornavirus by deep sequencing of human stool samples in Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
LEAL, Elcio
MILAGRES, Flavio Augusto de Padua
KOMNINAKIS, Shirley Vasconcelos
BRUSTULIN, Rafael
TELES, Maria da Aparecida Rodrigues
LOBATO, Marcia Cristina Alves Brito Sayao
CHAGAS, Rogerio Togisaki das
ABRAO, Maria de Fatima Neves dos Santos
Citação
VIRUS GENES, v.55, n.3, p.332-338, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The nearly complete genome sequences of two Cucumis melo endornavirus (CmEV) strains were obtained using deep sequencing while investigating fecal samples for the presence of gastroenteritis viruses. The Brazilian CmEV BRA/TO-23 (aa positions 116-5027) and BRA/TO-74 (aa positions 26-5057) strains were nearly identical to the reference CmEV CL-01 (USA) and SJ1 (South Korea) strains, showing 97% and 98% of nucleotide and amino acid identity, respectively. Endornaviruses are not known to be associated with human disease and their presence may simply reflect recent dietary consumption. Metagenomic analyses offered an opportunity to identify for the first time in Brazil a newly described endornavirus species.
Palavras-chave
Virus discovery, Gastroenteritis, Metagenomic, Plant viruses, Endornavirus
Referências
  1. Bartholomaus A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165965
  2. da Costa AC, 2017, EMERG INFECT DIS, V23, P1742, DOI 10.3201/eid2310.170307
  3. Deng XT, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv002
  4. Fernandez-Cassi X, 2018, SCI TOTAL ENVIRON, V618, P870, DOI 10.1016/j.scitotenv.2017.08.249
  5. Fukuhara T, 2006, ARCH VIROL, V151, P995, DOI 10.1007/s00705-005-0688-5
  6. GRILL LK, 1981, P NATL ACAD SCI-BIOL, V78, P7043, DOI 10.1073/pnas.78.11.7043
  7. Hao FM, 2018, VIRUSES-BASEL, V10, DOI 10.3390/v10050254
  8. HWANG DJ, 1994, P NATL ACAD SCI USA, V91, P9067, DOI 10.1073/pnas.91.19.9067
  9. JAGADISH MN, 1993, J GEN VIROL, V74, P893, DOI 10.1099/0022-1317-74-5-893
  10. Li L, 2015, J VIROL METHODS, V213, P139, DOI 10.1016/j.jviromet.2014.12.002
  11. Lim S, 2015, ARCH VIROL, V160, P3153, DOI 10.1007/s00705-015-2616-7
  12. Liu HQ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042147
  13. Longfier L, 2016, APPETITE, V107, P494, DOI 10.1016/j.appet.2016.08.124
  14. Mello CS, 2016, J PEDIAT-BRAZIL, V92, P451, DOI 10.1016/j.jped.2016.02.013
  15. Nordenstedt N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178242
  16. Ong JWL, 2016, VIROLOGY, V499, P203, DOI 10.1016/j.virol.2016.08.019
  17. Osaki H, 2006, VIRUS RES, V118, P143, DOI 10.1016/j.virusres.2005.12.004
  18. Pfeiffer P, 1998, J GEN VIROL, V79, P2349, DOI 10.1099/0022-1317-79-10-2349
  19. Quito-Avila DF, 2014, EUR J PLANT PATHOL, V140, P193, DOI 10.1007/s10658-014-0454-1
  20. Sabanadzovic S, 2016, VIRUS RES, V214, P49, DOI 10.1016/j.virusres.2016.01.001
  21. Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121
  22. Vibin J, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26851-1
  23. Zhang T, 2006, PLOS BIOL, V4, P108, DOI 10.1371/journal.pbio.0040003