Gene Expression Profile in Response to Doxorubicin-Rapamycin Combined Treatment of HER-2-Overexpressing Human Mammary Epithelial Cell Lines

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER ASSOC CANCER RESEARCH
Citação
MOLECULAR CANCER THERAPEUTICS, v.11, n.2, p.464-474, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
HER-2-positive breast cancers frequently sustain elevated AKT/mTOR signaling, which has been associated with resistance to doxorubicin treatment. Here, we investigated whether rapamycin, an mTOR inhibitor, increased the sensitivity to doxorubicin therapy in two HER-2-overexpressing cell lines: C5.2, which was derived from the parental HB4a by transfection with HER-2 and SKBR3, which exhibits HER-2 amplification. The epithelial mammary cell line HB4a was also analyzed. The combined treatment using 20 nmol/L of rapamycin and 30 nmol/L of doxorubicin arrested HB4a and C5.2 cells in S to G(2)-M, whereas SKBR3 cells showed an increase in the G(0)-G(1) phase. Rapamycin increased the sensitivity to doxorubicin in HER-2-overexpressing cells by approximately 2-fold, suggesting that the combination displayed a more effective antiproliferative action. Gene expression profiling showed that these results might reflect alterations in genes involved in canonical pathways related to purine metabolism, oxidative phosphorylation, protein ubiquitination, and mitochondrial dysfunction. A set of 122 genes modulated by the combined treatment and specifically related to HER-2 overexpression was determined by finding genes commonly regulated in both C5.2 and SKBR3 that were not affected in HB4a cells. Network analysis of this particular set showed a smaller subgroup of genes in which coexpression pattern in HB4a cells was disrupted in C5.2 and SKBR3. Altogether, our data showed a subset of genes that might be more robust than individual markers in predicting the response of HER-2-overexpressing breast cancers to doxorubicin and rapamycin combination.
Palavras-chave
Referências
  1. Arpino G, 2005, BREAST CANCER RES TR, V92, P69, DOI 10.1007/s10549-005-1721-9
  2. BENJAMIN RS, 1977, CANCER RES, V37, P1416
  3. BERRIDGE MJ, 1989, CELL, V59, P411, DOI 10.1016/0092-8674(89)90026-3
  4. Carraro DM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021022
  5. Chan S, 2005, J CLIN ONCOL, V23, P5314, DOI 10.1200/JCO.2005.66.130
  6. Chuang HY, 2007, MOL SYST BIOL, V3, DOI 10.1038/msb4100180
  7. DiGiovanna MP, 2008, J CLIN ONCOL, V26, P2364, DOI 10.1200/JCO.2007.13.6580
  8. Dressler LG, 2005, J CLIN ONCOL, V23, P4287, DOI 10.1200/JCO.2005.11.012
  9. Gennari A, 2008, J NATL CANCER I, V100, P14, DOI 10.1093/jnci/djm252
  10. Glynn RW, 2010, ANN SURG ONCOL, V17, P1392, DOI 10.1245/s10434-009-0855-0
  11. Goldhirsch A, 2009, ANN ONCOL, V20, P1319, DOI 10.1093/annonc/mdp322
  12. Guertin DA, 2007, CANCER CELL, V12, P9, DOI 10.1016/j.ccr.2007.05.008
  13. Harris RA, 1999, INT J CANCER, V80, P477, DOI 10.1002/(SICI)1097-0215(19990129)80:3<477::AID-IJC23>3.0.CO;2-W
  14. Hernandez-Aya LF, 2011, ONCOLOGIST, V16, P404, DOI 10.1634/theoncologist.2010-0402
  15. Hui STY, 2008, P NATL ACAD SCI USA, V105, P3921, DOI 10.1073/pnas.0800293105
  16. Jarvinen TAH, 2000, AM J PATHOL, V156, P839, DOI 10.1016/S0002-9440(10)64952-8
  17. Prasad TSK, 2009, NUCLEIC ACIDS RES, V37, pD767, DOI 10.1093/nar/gkn892
  18. KU DH, 1991, CELL GROWTH DIFFER, V2, P179
  19. Li XQ, 2005, BREAST CANCER RES, V7, pR589, DOI 10.1186/bcr1259
  20. Meric-Bernstam F, 2009, J CLIN ONCOL, V27, P2278, DOI 10.1200/JCO.2008.20.0766
  21. Miller TW, 2009, CLIN CANCER RES, V15, P7266, DOI 10.1158/1078-0432.CCR-09-1665
  22. Mondesire WH, 2004, CLIN CANCER RES, V10, P7031, DOI 10.1158/1078-0432.CCR-04-0361
  23. Morrow PK, 2011, J CLIN ONCOL, V10, P3126
  24. Mueller P, 2008, NAT IMMUNOL, V9, P424, DOI 10.1038/ni1570
  25. Noh WC, 2004, CLIN CANCER RES, V10, P1013, DOI 10.1158/1078-0432.CCR-03-0043
  26. Oakman C, 2009, CANCER TREAT REV, V35, P662, DOI 10.1016/j.ctrv.2009.08.006
  27. O'Reilly KE, 2006, CANCER RES, V66, P1500, DOI 10.1158/0008-5472.CAN-05-2925
  28. Possemato R, 2011, NATURE, V476, P346, DOI 10.1038/nature10350
  29. Pritchard KI, 2006, NEW ENGL J MED, V354, P2103, DOI 10.1056/NEJMoa054504
  30. R Development Core Team, 2009, R LANG ENV STAT COMP
  31. Rantala JK, 2010, NEOPLASIA, V12, P877, DOI 10.1593/neo.10548
  32. Raymond E, 2004, J CLIN ONCOL, V22, P2336, DOI 10.1200/JCO.2004.08.116
  33. Rody A, 2007, BREAST, V16, P86, DOI 10.1016/j.breast.2006.06.008
  34. Rulten SL, 2006, MAMM GENOME, V17, P322, DOI 10.1007/s00335-005-0127-7
  35. Schieke SM, 2008, J BIOL CHEM, V283, P28506, DOI 10.1074/jbc.M802763200
  36. Schieke SM, 2006, BIOL CHEM, V387, P1357, DOI 10.1515/BC.2006.170
  37. Schmidt O, 2010, NAT REV MOL CELL BIO, V11, P655, DOI 10.1038/nrm2959
  38. Slamon DJ, 2001, NEW ENGL J MED, V344, P783, DOI 10.1056/NEJM200103153441101
  39. Sokolosky ML, 2011, ONCOTARGET, V2, P538
  40. Steelman LS, 2008, ONCOGENE, V27, P4086, DOI 10.1038/onc.2008.49
  41. Taylor IW, 2009, NAT BIOTECHNOL, V27, P199, DOI 10.1038/nbt.1522
  42. Timms JF, 2002, ONCOGENE, V21, P6573, DOI 10.1038/sj.onc.1205847
  43. Vargas-Roig LM, 1998, INT J CANCER, V2, P129
  44. Wang YA, 2008, INT J CANCER, V123, P1536, DOI 10.1002/ijc.23671
  45. Wendel HG, 2006, CANCER RES, V66, P7639, DOI 10.1158/0008-5472.CAN-06-0419