Genetic diversity of Trypanosoma cruzi strains isolated from chronic chagasic patients and non-human hosts in the state of Sao Paulo, Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
FUNDACO OSWALDO CRUZ
Autores
SOUZA, Thiago Kury Moreno de
WESTPHALEN, Elizabeth Visone Nunes
WESTPHALEN, Sansao da Rocha
TANIGUCHI, Helena Hilomi
ELIAS, Carlos Roberto
MOTOIE, Gabriela
GAVA, Ricardo
PEREIRA-CHIOCCOLA, Vera Lucia
NOVAES, Christina Terra Gallafrio
CARVALHO, Noemia Barbosa
Citação
MEMORIAS DO INSTITUTO OSWALDO CRUZ, v.117, article ID e220125, 9p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND Trypanosoma cruzi shows an exuberant genetic diversity. Currently, seven phylogenetic lineages, called discrete typing units (DTUs), are recognised: TcI-TcVI and Tcbat. Despite advances in studies on T. cruzi and its populations, there is no consensus regarding its heterogeneity. OBJECTIVES This study aimed to perform molecular characterisation of T. cruzi strains, isolated in the state of S??o Paulo, to identify the DTUs involved and evaluate their genetic diversity. METHODS T. cruzi strains were isolated from biological samples of chronic chagasic patients, marsupials and triatomines through culture techniques and subjected to molecular characterisation using the fluorescent fragment length barcoding (FFLB) technique. Subsequently, the results were correlated with complementary information to enable better discrimination between the identified DTUs. FINDINGS It was possible to identify TcI in two humans and two triatomines; TcII/VI in 19 humans, two marsupials and one triatomine; and TcIII in one human host, an individual that also presented a result for TcI, which indicated the possibility of a mixed infection. Regarding the strains characterised by the TcII/VI profile, the correlation with complementary information allowed to suggest that, in general, these parasite populations indeed correspond to the TcII genotype. MAIN CONCLUSIONS The TcII/VI profile, associated with domestic cycles and patients with chronic Chagas disease, was the most prevalent among the identified DTUs. Furthermore, the correlation of the study results with complementary information made it possible to suggest that TcII is the predominant lineage of this work.
Palavras-chave
Chagas disease, host-pathogen interactions, molecular biology, Trypanosoma cruzi
Referências
  1. Balouz V, 2017, ADV PARASIT, V97, P1, DOI 10.1016/bs.apar.2016.10.001
  2. Barretto MP, 1979, TRYPANOSOMA CRUZI DO, P89
  3. Bisugo Marcia da Conceicao, 1998, Revista do Instituto Adolfo Lutz, V57, P89
  4. Breniere SF, 1998, EXP PARASITOL, V89, P285, DOI 10.1006/expr.1998.4295
  5. Breniere SF, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004792
  6. Chiari E, 1989, Rev Soc Bras Med Trop, V22, P19, DOI 10.1590/S0037-86821989000100004
  7. Coura JR, 2007, MEM I OSWALDO CRUZ, V102, P113, DOI 10.1590/S0074-02762007000900018
  8. Cura CI, 2010, INT J PARASITOL, V40, P1599, DOI 10.1016/j.ijpara.2010.06.006
  9. Silva EODE, 2011, REV SOC BRAS MED TRO, V44, P74
  10. da Silva RA, 2019, BEPA, V16, P13
  11. Dario MA, 2016, PARASITE VECTOR, V9, DOI 10.1186/s13071-016-1754-4
  12. Ramirez JD, 2014, INFECT GENET EVOL, V22, P250, DOI 10.1016/j.meegid.2013.06.022
  13. de Freitas JM, 2006, PLOS PATHOG, V2, P226, DOI 10.1371/journal.ppat.0020024
  14. De Souza W, 2002, CURR PHARM DESIGN, V8, P269, DOI 10.2174/1381612023396276
  15. Devillers H, 2008, J THEOR BIOL, V255, P307, DOI 10.1016/j.jtbi.2008.08.023
  16. Breniere SF, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001650
  17. Gaunt MW, 2003, NATURE, V421, P936, DOI 10.1038/nature01438
  18. Hamilton PB, 2008, INFECT GENET EVOL, V8, P26, DOI 10.1016/j.meegid.2007.09.003
  19. Hamilton PB, 2011, INFECT GENET EVOL, V11, P44, DOI 10.1016/j.meegid.2010.10.012
  20. Herrera Claudia, 2009, J Parasitol Res, V2009, DOI 10.1155/2009/897364
  21. Jansen AM, DISTRIBUICAO DTUS TR
  22. Jansen AM, 2020, FRONT CELL INFECT MI, V10, DOI 10.3389/fcimb.2020.00010
  23. Lewis MD, 2009, INT J PARASITOL, V39, P1305, DOI 10.1016/j.ijpara.2009.04.001
  24. Lima-Oliveira TM, 2020, ACTA TROP, V201, DOI 10.1016/j.actatropica.2019.105188
  25. Llewellyn MS, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000410
  26. Marcili A, 2009, PARASITOLOGY, V136, P641, DOI 10.1017/S0031182009005861
  27. Matos GM, 2022, ELIFE, V11, DOI 10.7554/eLife.75237
  28. Messenger LA, 2015, ACTA TROP, V151, P150, DOI 10.1016/j.actatropica.2015.05.007
  29. MOREL C M, 1986, Parasitology Today, V2, P97, DOI 10.1016/0169-4758(86)90038-4
  30. Ramirez JD, 2014, ZOONOSES PUBLIC HLTH, V61, P477, DOI 10.1111/zph.12094
  31. ROCHA E SILVA E. O., 1969, Revista de Saude Publica, V3, P173, DOI 10.1590/S0034-89101969000200007
  32. Silva RAD, 2021, REV SOC BRAS MED TRO, V54
  33. Silva RAD, 2020, REV SOC BRAS MED TRO, V54
  34. Sturm NR, 2003, INT J PARASITOL, V33, P269, DOI 10.1016/S0020-7519(02)00264-3
  35. Valenca-Barbosa C, 2021, ACTA TROP, V222, DOI 10.1016/j.actatropica.2021.106054
  36. Westenberger SJ, 2005, GENETICS, V171, P527, DOI 10.1534/genetics.104.038745
  37. Zingales B, 2011, REV BIOL-LISBON, V6b, P44
  38. Zingales B, 2022, MEM I OSWALDO CRUZ, V117, DOI 10.1590/0074-02760210193
  39. Zingales B, 2018, ACTA TROP, V184, P38, DOI 10.1016/j.actatropica.2017.09.017
  40. Zingales B, 2012, INFECT GENET EVOL, V12, P240, DOI 10.1016/j.meegid.2011.12.009