Myocardial T1 mapping and extracellular volume quantification in patients with left ventricular non-compaction cardiomyopathy

Carregando...
Imagem de Miniatura
Citações na Scopus
36
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Citação
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, v.19, n.8, p.888-895, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aims From pathophysiological mechanisms to risk stratification and management, much debate and discussion persist regarding left ventricular non-compaction cardiomyopathy (LVNC). This study aimed to characterize myocardial T1 mapping and extracellular volume (ECV) fraction by cardiovascular magnetic resonance (CMR), and investigate how these biomarkers relate to left ventricular ejection fraction (LVEF) and ventricular arrhythmias (VA) in LVNC. Methods and results Patients with LVNC (n = 36) and healthy controls (n = 18) were enrolled to perform a CMR with T1 mapping. ECV was quantified in LV segments without late gadolinium enhancement (LGE) areas to investigate diffuse myocardial fibrosis. Patients with LVNC had slightly higher native T1 (1024 +/- 43ms vs. 995 +/- 22 ms, P = 0.01) and substantially expanded ECV (28.0 +/- 4.5% vs. 23.5 +/- 2.2%, P < 0.001) compared to controls. The ECV was independently associated with LVEF (beta = -1.3, P = 0.001). Among patients without LGE, VAs were associated with higher ECV (27.7% with VA vs. 25.8% without VA, P = 0.002). Conclusion In LVNC, tissue characterization by T1 mapping suggests an extracellular expansion by diffuse fibrosis in myocardium without LGE, which was associated with myocardial dysfunction and VA, but not with the amount of noncompacted myocardium.
Palavras-chave
left ventricular non-compaction cardiomyopathy, T1 mapping, extracellular volume, myocardial fibrosis, myocardial dysfunction, ventricular arrhythmias
Referências
  1. Andreini D, 2016, J AM COLL CARDIOL, V68, P2166, DOI 10.1016/j.jacc.2016.08.053
  2. Arbustini E, 2014, J AM COLL CARDIOL, V64, P1840, DOI 10.1016/j.jacc.2014.08.030
  3. Bozkurt B, 2016, CIRCULATION, V134, pE579, DOI 10.1161/CIR.0000000000000455
  4. Chin CWL, 2017, JACC-CARDIOVASC IMAG, V10, P1320, DOI 10.1016/j.jcmg.2016.10.007
  5. Dabir D, 2014, J CARDIOVASC MAGN R, V16, DOI 10.1186/s12968-014-0069-x
  6. Duca F, 2016, CIRC-CARDIOVASC IMAG, V9, DOI 10.1161/CIRCIMAGING.116.005277
  7. ENGBERDING R, 1984, AM J CARDIOL, V53, P1733, DOI 10.1016/0002-9149(84)90618-0
  8. Ferreira VM, 2012, J CARDIOVASC MAGN R, V14, DOI 10.1186/1532-429X-14-42
  9. Gai ND, 2013, MAGN RESON MED, V69, P329, DOI 10.1002/mrm.24251
  10. Hoedemaekers YM, 2010, CIRC-CARDIOVASC GENE, V3, P232, DOI 10.1161/CIRCGENETICS.109.903898
  11. Inoue YY, 2017, RADIOLOGY, V282, P690, DOI 10.1148/radiol.2016160816
  12. Jenni R, 2002, J AM COLL CARDIOL, V39, P450, DOI 10.1016/S0735-1097(01)01765-X
  13. Jenni R, 2001, HEART, V86, P666, DOI 10.1136/heart.86.6.666
  14. Kawel N, 2012, CIRC-CARDIOVASC IMAG, V5, P357, DOI 10.1161/CIRCIMAGING.111.971713
  15. Li J, 2015, CLIN RES CARDIOL, V104, P241, DOI 10.1007/s00392-014-0778-z
  16. Liu CY, 2013, J AM COLL CARDIOL, V62, P1280, DOI 10.1016/j.jacc.2013.05.078
  17. Mewton N, 2011, J AM COLL CARDIOL, V57, P891, DOI 10.1016/j.jacc.2010.11.013
  18. Moon JC, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-92
  19. Moon JCC, 2004, J AM COLL CARDIOL, V43, P2260, DOI 10.1016/j.jacc.2004.03.035
  20. Moravsky G, 2013, JACC-CARDIOVASC IMAG, V6, P587, DOI 10.1016/j.jcmg.2012.09.018
  21. Mordi I, 2016, EUR HEART J-CARD IMG, V17, P797, DOI 10.1093/ehjci/jev216
  22. Muser D, 2017, HEART RHYTHM, V14, P166, DOI 10.1016/j.hrthm.2016.11.014
  23. Nakamori S, 2017, J MAGN RESON IMAGING, V46, P1073, DOI 10.1002/jmri.25652
  24. Neilan TG, 2013, JACC-CARDIOVASC IMAG, V6, P672, DOI 10.1016/j.jcmg.2012.09.020
  25. Oechslin E, 2011, EUR HEART J, V32, P1446, DOI 10.1093/eurheartj/ehq508
  26. Ottaviani G, 2016, CARDIOVASC PATHOL, V25, P293, DOI 10.1016/j.carpath.2016.03.004
  27. Paterick TE, 2012, J AM SOC ECHOCARDIOG, V25, P363, DOI 10.1016/j.echo.2011.12.023
  28. Petersen SE, 2005, J AM COLL CARDIOL, V46, P101, DOI 10.1016/j.jacc.2005.03.045
  29. Petersen SE, 2013, JACC-CARDIOVASC IMAG, V6, P941, DOI 10.1016/j.jcmg.2013.03.007
  30. Puntmann VO, 2016, CIRC RES, V119, P277, DOI 10.1161/CIRCRESAHA.116.307974
  31. Puntmann VO, 2016, JACC-CARDIOVASC IMAG, V9, P40, DOI 10.1016/j.jcmg.2015.12.001
  32. Puntmann VO, 2013, JACC-CARDIOVASC IMAG, V6, P475, DOI [10.1016/j.jcmg.2012.12.019, 10.1016/j.jcmg.2012.08.019]
  33. Rogers T, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-78
  34. Roux C, 2017, J MAGN RESON IMAGING, V45, P147, DOI 10.1002/jmri.25374
  35. Sado DM, 2012, HEART, V98, P1436, DOI 10.1136/heartjnl-2012-302346
  36. Schulz-Menger J, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-35
  37. de Melo MDT, 2017, EUR HEART J-CARD IMG, V18, P915, DOI 10.1093/ehjci/jex036
  38. Taylor AJ, 2016, JACC-CARDIOVASC IMAG, V9, P67, DOI 10.1016/j.jcmg.2015.11.005
  39. Ugander M, 2012, EUR HEART J, V33, P1268, DOI 10.1093/eurheartj/ehr481
  40. White JA, 2007, CARDIOL CLIN, V25, P71, DOI 10.1016/j.ccl.2007.02.003
  41. Zhou HM, 2016, CIRC J, V80, P1210, DOI 10.1253/circj.CJ-15-1269