Fully Automated Habenula Segmentation Provides Robust and Reliable Volume Estimation Across Large Magnetic Resonance Imaging Datasets, Suggesting Intriguing Developmental Trajectories in Psychiatric Disease

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
Citação
BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, v.5, n.9, p.923-929, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Studies of habenula (Hb) function and structure provided evidence of its involvement in psychiatric disorders, including schizophrenia and bipolar disorder. Previous studies using magnetic resonance imaging (manual/semi-automated segmentation) have reported conflicting results. Aiming to improve Hb segmentation reliability and the study of large datasets, we describe a fully automated protocol that was validated against manual segmentations and applied to 3 datasets (childhood/adolescence and adult bipolar disorder and schizophrenia). It achieved reliable Hb segmentation, providing robust volume estimations across a large age range and varying image acquisition parameters. Applying it to clinically relevant datasets, we found smaller Hb volumes in the adult bipolar disorder dataset and larger volumes in the adult schizophrenia dataset compared with healthy control subjects. There are indications that Hb volume in both groups shows deviating developmental trajectories early in life. This technique sets a precedent for future studies, as it allows for fast and reliable Hb segmentation and will be publicly available.
Palavras-chave
Automatic segmentation, Bipolar disorder, Habenula, MAGeTbrain, Schizophrenia, Volume
Referências
  1. Avants BB, 2011, NEUROIMAGE, V54, P2033, DOI 10.1016/j.neuroimage.2010.09.025
  2. Avants BB, 2010, NEUROIMAGE, V49, P2457, DOI 10.1016/j.neuroimage.2009.09.062
  3. Browne CA, 2018, FRONT SYNAPTIC NEURO, V10, DOI 10.3389/fnsyn.2018.00046
  4. Chakravarty MM, 2013, HUM BRAIN MAPP, V34, P2635, DOI 10.1002/hbm.22092
  5. Dhamala E, 2019, NMR BIOMED, V32, DOI 10.1002/nbm.4058
  6. Ely BA, 2016, HUM BRAIN MAPP, V37, P2369, DOI 10.1002/hbm.23179
  7. Erpelding N, 2014, J NEUROPHYSIOL, V111, P239, DOI 10.1152/jn.00405.2013
  8. Fakhoury M, 2017, NEUROSCI BIOBEHAV R, V83, P721, DOI 10.1016/j.neubiorev.2017.02.010
  9. Frazier JA, 2005, AM J PSYCHIAT, V162, P1256, DOI 10.1176/appi.ajp.162.7.1256
  10. Frazier JA, 2008, SCHIZOPHRENIA BULL, V34, P37, DOI 10.1093/schbul/sbm120
  11. Hibar DP, 2018, MOL PSYCHIATR, V23, P932, DOI 10.1038/mp.2017.73
  12. Hikosaka O, 2010, NAT REV NEUROSCI, V11, P503, DOI 10.1038/nrn2866
  13. Jhou TC, 2009, J COMP NEUROL, V513, P566, DOI 10.1002/cne.21891
  14. Kennedy DN, 2012, NEUROINFORMATICS, V10, P319, DOI 10.1007/s12021-011-9133-y
  15. Kim JW, 2016, NEUROIMAGE, V130, P145, DOI 10.1016/j.neuroimage.2016.01.048
  16. Kundu P, 2017, NEUROIMAGE, V154, P59, DOI 10.1016/j.neuroimage.2017.03.033
  17. Loonen AJM, 2017, FRONT NEURAL CIRCUIT, V11, DOI 10.3389/fncir.2017.00035
  18. Makowski C, 2018, NEUROIMAGE, V170, P182, DOI 10.1016/j.neuroimage.2017.02.069
  19. Matsumoto M, 2007, NATURE, V447, P1111, DOI 10.1038/nature05860
  20. McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031
  21. McLaughlin I, 2017, J NEUROCHEM, V142, P130, DOI 10.1111/jnc.14008
  22. Namboodiri VMK, 2016, CURR BIOL, V26, pR873, DOI 10.1016/j.cub.2016.08.051
  23. Park MTM, 2014, NEUROIMAGE, V95, P217, DOI 10.1016/j.neuroimage.2014.03.037
  24. Pipitone J, 2014, NEUROIMAGE, V101, P494, DOI 10.1016/j.neuroimage.2014.04.054
  25. Placzek MS, 2016, SEMIN NUCL MED, V46, P20, DOI 10.1053/j.semnuclmed.2015.09.001
  26. Sartorius A, 2010, BIOL PSYCHIAT, V67, pE9, DOI 10.1016/j.biopsych.2009.08.027
  27. Savitz JB, 2011, BIOL MOOD ANXIETY DI, V1, DOI 10.1186/2045-5380-1-7
  28. Savitz JB, 2011, BIOL PSYCHIAT, V69, P336, DOI 10.1016/j.biopsych.2010.09.027
  29. Schafer M, 2018, FRONT PSYCHIATRY, V9, DOI 10.3389/fpsyt.2018.00456
  30. Schaufelberger MS, 2007, BRIT J PSYCHIAT, V191, pS117, DOI 10.1192/bjp.191.51.s117
  31. Serpa MH, 2017, PSYCHOL MED, V47, P2613, DOI 10.1017/S0033291717001015
  32. Shepard PD, 2006, SCHIZOPHRENIA BULL, V32, P417, DOI 10.1093/schbul/sbj083
  33. Smitha KA, 2017, NEURORADIOL J, V30, DOI 10.1177/1971400917697342
  34. Stephenson-Jones M, 2012, P NATL ACAD SCI USA, V109, pE164, DOI 10.1073/pnas.1119348109
  35. Stopper CM, 2015, SCHIZOPHRENIA BULL, V41, P9, DOI 10.1093/schbul/sbu165
  36. Tullo S, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.107
  37. Tustison NJ, 2014, NEUROIMAGE, V99, P166, DOI 10.1016/j.neuroimage.2014.05.044
  38. Vincent RD, 2016, FRONT NEUROINFORM, V10, DOI 10.3389/fninf.2016.00035
  39. Winterburn JL, 2013, NEUROIMAGE, V74, P254, DOI 10.1016/j.neuroimage.2013.02.003
  40. Zahm DS, 2017, PHARMACOL BIOCHEM BE, V162, P3, DOI 10.1016/j.pbb.2017.06.004
  41. Zhang CC, 2019, BRAIN STIMUL, V12, P1298, DOI 10.1016/j.brs.2019.05.010
  42. Zhang L, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00636