Estimation of intracranial pressure by ultrasound of the optic nerve sheath in an animal model of intracranial hypertension

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Citação
JOURNAL OF CLINICAL NEUROSCIENCE, v.86, p.174-179, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Ultrasound of the optic nerve sheath diameter (ONSD) has been used as a non-invasive and cost-effective bedside alternative to invasive intracranial pressure (ICP) monitoring. However, ONSD time-lapse behavior in intracranial hypertension (ICH) and its relief by means of either saline infusion or surgery are still unknown. The objective of this study was to correlate intracranial pressure (ICP) and ultrasonography of the optic nerve sheath (ONS) in an experimental animal model of ICH and deter-mine the interval needed for ONSD to return to baseline levels. Methods: An experimental study was conducted on 30 pigs. ONSD was evaluated by ultrasound at differ-ent ICPs generated by intracranial balloon inflation, saline infusion, and balloon deflation, and measured using an intraventricular catheter. Results: All variables obtained by ONS ultrasonography such as left, right, and average ONSD (AON) were statistically significant to estimate the ICP value. ONSD changed immediately after balloon inflation and returned to baseline after an average delay of 30 min after balloon deflation (p = 0.016). No statistical sig-nificance was observed in the ICP and ONSD values with hypertonic saline infusion. In this swine model, ICP and ONSD showed linear correlation and ICP could be estimated using the formula:-80.5 + 238.2 x AON. Conclusion: In the present study, ultrasound to measure ONSD showed a linear correlation with ICP, although a short delay in returning to baseline levels was observed in the case of sudden ICH relief.
Palavras-chave
Optic nerve sheath diameter, Ultrasonography, Brain injury, Intracranial hypertension, Animal model
Referências
  1. Aduayi OS, 2015, J NEUROSCI RURAL PRA, V6, P563, DOI 10.4103/0976-3147.165347
  2. Amini A, 2013, EMERGENCY, V1, P15
  3. Badri S, 2012, INTENS CARE MED, V38, P1800, DOI 10.1007/s00134-012-2655-4
  4. Bauerle J, 2013, BMC NEUROL, V13, DOI 10.1186/1471-2377-13-187
  5. Ballantyne S A, 2002, Eur J Ultrasound, V15, P145, DOI 10.1016/S0929-8266(02)00036-8
  6. Belayev L, 2003, STROKE, V34, P2221, DOI 10.1161/01.STR.0000088061.06656.1E
  7. Bender M, 2020, ULTRASOUND J, V12, DOI 10.1186/s13089-020-00196-1
  8. Chen LM, 2019, BRIT J OPHTHALMOL, V103, P437, DOI 10.1136/bjophthalmol-2018-312934
  9. Chesnut RM, 2012, NEW ENGL J MED, V367, P2471, DOI 10.1056/NEJMoa1207363
  10. de Andrade AF, 2013, ARQ NEURO-PSIQUIAT, V71, P802, DOI 10.1590/0004-282X20130126
  11. de-Lima-Oliveira M, 2020, BRAIN INJURY, V34, P1270, DOI 10.1080/02699052.2020.1797166
  12. Dubourg J, SYST REV-LONDON, V2, P62
  13. Ertl M, 2017, EUR J NEUROL, V24, P461, DOI 10.1111/ene.13225
  14. Geeraerts T, 2008, CRIT CARE, V12, DOI 10.1186/cc6893
  15. Gupta S, 2019, NEUROL INDIA, V67, P772, DOI 10.4103/0028-3886.263231
  16. Kim H, 2017, J NEUROSURG, V127, P23, DOI 10.3171/2016.7.JNS161263
  17. Komut E, 2016, AM J EMERG MED, V34, P963, DOI 10.1016/j.ajem.2016.02.012
  18. Koziarz A, 2019, ANN INTERN MED, V171, P896, DOI 10.7326/M19-0812
  19. Levitt MR, 2013, WORLD NEUROSURG, V79, P600, DOI 10.1016/j.wneu.2013.03.047
  20. Lovrencic-Huzjan A, 2020, ACTA CLIN CROAT, V59, P50, DOI 10.20471/acc.2020.59.01.06
  21. Mukherjee D, 2013, NEW ENGL J MED, V368, P1748, DOI 10.1056/NEJMc1301076
  22. Nakamura T, 2003, BRAIN RES, V981, P108, DOI 10.1016/S0006-8993(03)02991-3
  23. Oliveira MD, 2018, NEUROL RES INT, V2018, DOI 10.1155/2018/7053932
  24. Padayachy LC, 2016, CHILD NERV SYST, V32, P1769, DOI 10.1007/s00381-016-3067-5
  25. Paiva WS, 2009, REV NEUROLOGIA, V48, P134, DOI 10.33588/rn.4803.2008575
  26. Rasulo FA, 2019, J CARDIOTHOR VASC AN, V33, pS38, DOI 10.1053/j.jvca.2019.03.040
  27. Rasulo FA, 2017, CRIT CARE, V21, DOI 10.1186/s13054-017-1632-2
  28. Rise IR, 1998, J NEUROSURG ANESTH, V10, P224
  29. Robba C, 2020, CRIT CARE, V24, DOI 10.1186/s13054-020-03105-z
  30. Robba C, 2019, INTENS CARE MED, V45, P1842, DOI 10.1007/s00134-019-05769-w
  31. Robba C, 2020, CHILD NERV SYST, V36, P117, DOI 10.1007/s00381-019-04235-8
  32. Robba C, 2018, INTENS CARE MED, V44, P1284, DOI 10.1007/s00134-018-5305-7
  33. Robba C, 2018, ACTA NEUROCHIR SUPPL, V126, P69, DOI 10.1007/978-3-319-65798-1_15
  34. Shi YY, 2010, TOHOKU J EXP MED, V220, P33, DOI 10.1620/tjem.220.33
  35. Sindelar B, 2017, J NEUROTRAUM, V34, P1703, DOI 10.1089/neu.2016.4648
  36. Skoglund K, 2013, J NEUROSCI NURS, V45, P360, DOI 10.1097/JNN.0b013e3182a3cf4f
  37. Soldatos T, 2009, EMERG MED J, V26, P630, DOI 10.1136/emj.2008.058453
  38. Strumwasser A, 2011, J SURG RES, V170, P265, DOI 10.1016/j.jss.2011.03.009
  39. TAKASUGI S, 1985, STROKE, V16, P651, DOI 10.1161/01.STR.16.4.651
  40. Tayal VS, 2007, ANN EMERG MED, V49, P508, DOI 10.1016/j.annemergmed.2006.06.040
  41. Wagner KR, 1998, J NEUROSURG, V88, P1058, DOI 10.3171/jns.1998.88.6.1058
  42. Wang LJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117939
  43. Zeiler FA, 2016, CRIT ULTRASOUND J, V8, DOI 10.1186/s13089-016-0044-x
  44. Zhou J, 2019, BMC MED IMAGING, V19, DOI 10.1186/s12880-019-0354-0