Redox modulation of thimet oligopeptidase activity by hydrogen peroxide

Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
ICIMOTO, Marcelo Y.
FERREIRA, Juliana C.
YOKOMIZO, Cesar H.
BIM, Larissa V.
MAREM, Alyne
OLIVEIRA, Vitor
NANTES, Iseli L.
Citação
FEBS OPEN BIO, v.7, n.7, p.1037-1050, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Thimet oligopeptidase (EC 3.4.24.15, TOP) is a cytosolic mammalian zinc protease that can process a diversity of bioactive peptides. TOP has been pointed out as one of the main postproteasomal enzymes that process peptide antigens in the MHC class I presentation route. In the present study, we describe a fine regulation of TOP activity by hydrogen peroxide (H2O2). Cells from a human embryonic kidney cell line (HEK293) underwent an ischemia/reoxygenation-like condition known to increase H2O2 production. Immediately after reoxygenation, HEK293 cells exhibited a 32% increase in TOP activity, but no TOP activity was observed 2 h after reoxygenation. In another model, recombinant rat TOP (rTOP) was challenged by H2O2 produced by rat liver mitoplasts (RLMt) alone, and in combination with antimycin A, succinate, and antimycin A plus succinate. In these conditions, rTOP activity increased 17, 30, 32 and 38%, respectively. Determination of H2O2 concentration generated in reoxygenated cells and mitoplasts suggested a possible modulation of rTOP activity dependent on the concentration of H2O2. The measure of pure rTOP activity as a function of H2O2 concentration corroborated this hypothesis. The data fitted to an asymmetrical bell-shaped curve in which the optimal activating H2O2 concentration was 1.2 nM, and the maximal inhibition (75% about the control) was 1 mu M. Contrary to the oxidation produced by aging associated with enzyme oligomerization and inhibition, H2O2 oxidation produced sulfenic acid and maintained rTOP in the monomeric form. Consistent with the involvement of rTOP in a signaling redox cascade, the H2O2-oxidized rTOP reacted with dimeric thioredoxin-1 (TRx-1) and remained covalently bound to one subunit of TRx-1.
Palavras-chave
EC 3.4.24.15, hydrogen peroxide, protein oxidation, thioredoxin
Referências
  1. BARRETT AJ, 1995, METHOD ENZYMOL, V248, P529
  2. Berti DA, 2009, J BIOL CHEM, V284, P14105, DOI 10.1074/jbc.M807916200
  3. Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797
  4. Camargo ACM, 1997, BIOCHEM J, V324, P517
  5. Canet-Aviles RM, 2004, P NATL ACAD SCI USA, V101, P9103, DOI 10.1073/pnas.0402959101
  6. Carballal S, 2009, BIOCHEMISTRY-US, V42, P9906
  7. CHAGAS JR, 1991, ANAL BIOCHEM, V192, P419, DOI 10.1016/0003-2697(91)90558-B
  8. Crack PJ, 1999, BRAIN RES, V835, P113, DOI 10.1016/S0006-8993(99)01494-8
  9. DANDO PM, 1993, BIOCHEM J, V294, P451
  10. DASILVA A, 1992, EUR J PHARMACOL, V212, P97, DOI 10.1016/0014-2999(92)90078-I
  11. Demasi M, 2008, FREE RADICAL BIO MED, V44, P1180, DOI 10.1016/j.freeradbiomed.2007.12.012
  12. Ellis HR, 1997, BIOCHEMISTRY-US, V36, P15013, DOI 10.1021/bi972191x
  13. ELLMAN GL, 1959, ARCH BIOCHEM BIOPHYS, V82, P70, DOI 10.1016/0003-9861(59)90090-6
  14. Facundo HTF, 2007, FREE RADICAL BIO MED, V42, P1039, DOI 10.1016/j.freeradbiomed.2007.01.001
  15. Freshney RI, 2010, CULTURE ANIMAL CELLS, P126
  16. Getz EB, 1999, ANAL BIOCHEM, V273, P73, DOI 10.1006/abio.1999.4203
  17. Glickman MH, 2002, PHYSIOL REV, V82, P373, DOI 10.1152/physrev.00027.2001
  18. Gough DR, 2011, CELL DEATH DIS, V2, DOI 10.1038/cddis.2011.96
  19. Graham Kelly A, 2010, Cancer Biol Ther, V10, P223
  20. Groeger G, 2009, ANTIOXID REDOX SIGN, V11, P2655, DOI 10.1089/ARS.2009.2728
  21. KAPLAN RS, 1983, BIOCHEM J, V212, P279
  22. Kawai C, 2009, BIOCHEMISTRY-US, V48, P8335, DOI 10.1021/bi9006463
  23. Kessler JH, 2011, NAT IMMUNOL, V12, P45, DOI 10.1038/ni.1974
  24. Kim HY, 2008, BIOCHEM BIOPH RES CO, V371, P490, DOI 10.1016/j.bbrc.2008.04.101
  25. LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
  26. Leatherbarrow RJ, 2011, GRAFIT VERSION 5
  27. Lee WC, 2005, NEUROCHEM RES, V30, P263, DOI 10.1007/s11064-005-2449-y
  28. Leonard SE, 2009, ACS CHEM BIOL, V4, P783, DOI 10.1021/cb900105q
  29. Lesley SM, 2003, BIOCHEM J, V376, P189
  30. Machado MFM, 2007, BIOCHEM J, V404, P279, DOI 10.1042/BJ20070060
  31. Malvezzi A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039408
  32. MARKLUND S, 1980, ACTA PHYSIOL SCAND, P19
  33. MENTLEIN R, 1994, J NEUROCHEM, V62, P27
  34. Miller EW, 2010, P NATL ACAD SCI USA, V107, P15681, DOI 10.1073/pnas.1005776107
  35. MOLINEAUX CJ, 1988, J NEUROCHEM, V51, P624, DOI 10.1111/j.1471-4159.1988.tb01084.x
  36. Muller FL, 2004, J BIOL CHEM, V279, P49064, DOI 10.1074/jbc.M407715200
  37. Nomoto S, 2014, ANN SURG ONCOL, V21, P443, DOI 10.1245/s10434-014-3581-1
  38. Oliveira V, 2003, FEBS LETT, V541, P89, DOI 10.1016/S0014-5793(03)00310-7
  39. Oliveira V, 2001, BIOCHEMISTRY-US, V40, P4417, DOI 10.1021/bi002715k
  40. ORLOWSKI M, 1989, BIOCHEM J, V261, P951
  41. Paulsen CE, 2013, CHEM REV, V113, P4633, DOI 10.1021/cr300163e
  42. Pessoto FS, 2009, CHEM-BIOL INTERACT, V181, P400, DOI 10.1016/j.cbi.2009.07.012
  43. Philibert KD, 2014, FRONT AGING NEUROSCI, V6, DOI 10.3389/fnagi.2014.00265
  44. Portaro FCV, 2001, EUR J BIOCHEM, V268, P887, DOI 10.1046/j.1432-1327.2001.01978.x
  45. Qi L, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106665
  46. RADI R, 1993, ARCH BIOCHEM BIOPHYS, V300, P409, DOI 10.1006/abbi.1993.1055
  47. Ramirez S, 2015, FASEB J, V29
  48. Randall LM, 2013, METHOD ENZYMOL, V527, P41, DOI 10.1016/B978-0-12-405882-8.00003-9
  49. Ray K, 2004, J BIOL CHEM, V279, P20480, DOI 10.1074/jbc.M400795200
  50. Ray K, 2002, PROTEIN SCI, V11, P2237, DOI 10.1110/ps.0216302
  51. Rock KL, 2004, NAT IMMUNOL, V5, P670, DOI 10.1038/ni1089
  52. Saric T, 2004, J BIOL CHEM, V279, P46723, DOI 10.1074/jbc.M406537200
  53. Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
  54. Shrimpton CN, 1997, J BIOL CHEM, V272, P17395, DOI 10.1074/jbc.272.28.17395
  55. Smith AI, 2000, HYPERTENSION, V35, P626
  56. Tanner JJ, 2011, ANTIOXID REDOX SIGN, V15, P77, DOI 10.1089/ars.2010.3611
  57. Tompkins AJ, 2006, BBA-MOL BASIS DIS, V1762, P223, DOI 10.1016/j.bbadis.2005.10.001
  58. Turrens JF, 2003, J PHYSIOL-LONDON, V552, P335, DOI 10.1113/jphysiol.2003.049478
  59. Ushio-Fukai M, 2009, ANTIOXID REDOX SIGN, V11, P1289, DOI 10.1089/ARS.2008.2333
  60. vonsLohneysen K, 2010, MOL CELL BIOL, V30, P961
  61. Wu CG, 2011, ANTIOXID REDOX SIGN, V15, P2565, DOI 10.1089/ars.2010.3831
  62. Yamin R, 1999, J BIOL CHEM, V274, P18777, DOI 10.1074/jbc.274.26.18777
  63. York IA, 2003, IMMUNITY, V18, P429, DOI 10.1016/S1074-7613(03)00058-X
  64. Zhang HJ, 2002, J BIOL CHEM, V277, P20919, DOI 10.1074/jbc.M109801200
  65. Zhou MJ, 1997, ANAL BIOCHEM, V253, P162, DOI 10.1006/abio.1997.2391