Combined spinal and general anesthesia attenuate tumor promoting effects of surgery. An experimental animal study

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Citação
ANNALS OF MEDICINE AND SURGERY, v.75, article ID 103398, 8p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Radical prostatectomy, a standard management approach for localized Prostate Cancer (PC), may cause a stress response associated with immune modulating effects. Regional anesthesia was hypothesized to reduce the immune effects of surgery by minimizing the neuroendocrine surgical stress response, thus mitigating tumor cells dissemination. Our primary objective was to investigate whether the use of spinal blocks attenuates PC tumor cells dissemination on an animal model. We also assessed the number of circulating NK cells and the amount of inflammatory and anti-inflammatory cytokines. Materials and methods: A subcutaneous tumor model, with PC-3M cell line transfected with a luciferase-producing gene (PC-3M-luc-C6) was used. After proper tumor establishment and before tumors became metastatic, animals were submitted to tumor excision surgeries under general or combined (general and spinal) anesthesia. A control group was only anesthetized with general anesthesia. Results: The subcutaneous tumor model with PC-3M-luc-C6 cells was effective in causing distant metastasis after 35 days. The number of circulating tumor cells increased in animals that underwent surgery under general anesthesia alone compared to the group submitted to combined anesthesia. Interleukin 6 levels were different in all groups, with increase in the general anesthesia group. Conclusion: Our results suggest that combination of spinal and general anesthesia may attenuate the suppression of innate tumor immunity and it might be related to a reduction in the neuroendocrine response to surgery. Institutional protocol number: Animal Ethics Committee 1332/2019.
Palavras-chave
Anesthesia, Spinal, Prostatic neoplasms, Neoplastic cells, Circulating, Cytokines, Killer cells, Natural
Referências
  1. Almishri W, 2016, J INNATE IMMUN, V8, P617, DOI 10.1159/000448077
  2. Angka L, 2018, ANN SURG ONCOL, V25, P3747, DOI 10.1245/s10434-018-6691-3
  3. Angka L, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18081787
  4. Arifin WN, 2017, MALAYS J MED SCI, V24, P101, DOI 10.21315/mjms2017.24.5.11
  5. Bar-Yosef S, 2001, ANESTHESIOLOGY, V94, P1066, DOI 10.1097/00000542-200106000-00022
  6. Biki B, 2008, ANESTHESIOLOGY, V109, P180, DOI 10.1097/ALN.0b013e31817f5b73
  7. Brady J, 2010, J IMMUNOL, V185, P6679, DOI 10.4049/jimmunol.0903354
  8. Cata JP, 2018, CURR OPIN ANESTHESIO, V31, P593, DOI 10.1097/ACO.0000000000000636
  9. Charan J, 2013, J PHARMACOL PHARMACO, V4, P303, DOI 10.4103/0976-500X.119726
  10. Connolly C, 2016, CURR OPIN ANESTHESIO, V29, P468, DOI 10.1097/ACO.0000000000000360
  11. Deegan CA, 2010, REGION ANESTH PAIN M, V35, P490, DOI 10.1097/AAP.0b013e3181ef4d05
  12. Mejia-Terrazas GE, 2019, J SHOULDER ELB SURG, V28, pE291, DOI 10.1016/j.jse.2019.02.030
  13. Hashimoto M, 2018, J THORAC DIS, V10, P298, DOI 10.21037/jtd.2017.12.56
  14. Hiam-Galvez KJ, 2021, NAT REV CANCER, V21, P345, DOI 10.1038/s41568-021-00347-z
  15. HYLDEN JLK, 1980, EUR J PHARMACOL, V67, P313, DOI 10.1016/0014-2999(80)90515-4
  16. Jang JS, 2018, REV BRAS ANESTESIOL, V68, P558, DOI [10.1016/j.bjane.2018.04.002, 10.1016/j.bjan.2018.03.004]
  17. Jawa Randeep S, 2011, J Intensive Care Med, V26, P73, DOI 10.1177/0885066610395679
  18. Jayme TS, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aba4376
  19. Karmakar MK, 2017, ANTICANCER RES, V37, P5813, DOI 10.21873/anticanres.12024
  20. Kilkenny C, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000412
  21. Le-Wendling L, 2016, PAIN MED, V17, P756, DOI 10.1111/pme.12893
  22. Li SC, 2019, BMC CANCER, V19, DOI 10.1186/s12885-019-6158-3
  23. Lin E, 2000, SURGERY, V127, P117, DOI 10.1067/msy.2000.101584
  24. Liu L, 2021, J ANESTH, V35, P3, DOI 10.1007/s00540-020-02848-x
  25. Marcais A, 2013, FRONT IMMUNOL, V4, DOI 10.3389/fimmu.2013.00450
  26. Marcenaro E, 2005, J IMMUNOL, V174, P3992, DOI 10.4049/jimmunol.174.7.3992
  27. Matsumoto M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26273-z
  28. MESTRE C, 1994, J PHARMACOL TOX MET, V32, P197, DOI 10.1016/1056-8719(94)90087-6
  29. Miki C, 2008, SURG TODAY, V38, P579, DOI 10.1007/s00595-007-3674-6
  30. Muller SD, 2021, J CLIN MED, V10, DOI 10.3390/jcm10040719
  31. Murray NP, 2019, ECANCERMEDICALSCIENC, V13, DOI 10.3332/ecancer.2019.934
  32. Pan D, 2022, EXP NEUROL, V347, DOI 10.1016/j.expneurol.2021.113909
  33. Pang K, 2018, CYTOM PART A, V93A, P517, DOI 10.1002/cyto.a.23369
  34. Rusiecki J, 2020, J NEUROINFLAMM, V17, DOI 10.1186/s12974-019-1624-z
  35. Salmon-Ehr V, 2000, LAB INVEST, V80, P1337, DOI 10.1038/labinvest.3780141
  36. Samiea A, 2020, PROSTATE CANCER, V2020, DOI 10.1155/2020/5305306
  37. Sessler DI, 2019, LANCET, V394, P1807, DOI 10.1016/S0140-6736(19)32313-X
  38. Shi LP, 2020, CANCER CONTROL, V27, DOI 10.1177/1073274820906811
  39. Snyder GL, 2010, BRIT J ANAESTH, V105, P106, DOI 10.1093/bja/aeq164
  40. Tamminga M, 2020, CLIN CANCER RES, V26, P1656, DOI 10.1158/1078-0432.CCR-19-2541
  41. Wada H, 2007, ANESTHESIOLOGY, V106, P499, DOI 10.1097/00000542-200703000-00014
  42. Wang RP, 2012, J LEUKOCYTE BIOL, V91, P299, DOI 10.1189/jlb.0611308
  43. Wu XY, 2013, ENDOCR-RELAT CANCER, V20, pR155, DOI 10.1530/ERC-12-0285
  44. Zura M, 2012, IMMUNOBIOLOGY, V217, P622, DOI 10.1016/j.imbio.2011.10.018