Lipid transfer to high-density lipoproteins in coronary artery disease patients with and without previous cerebrovascular ischemic events

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
CLINICAL CARDIOLOGY, v.42, n.11, p.1100-1105, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Patients with coronary artery disease (CAD) and previous ischemic cerebrovascular events (ICVE, ischemic stroke, or transitory ischemic attack) constitute a high-risk subgroup for cardiovascular outcomes. High-density lipoprotein cholesterol (HDL-C) levels are correlated with cardiovascular events. Lipid transfer to HDL affects structure size and HDL subclass profile. Impairment of this transfer could influence ischemic risk seen in patients with CAD + ICVE. The objective was to evaluate the HDL ability to receive the lipids in patients with CAD with or without ICVE. Methods Patients with CAD + ICVE (n = 60) and patients with CAD only (n = 60) were matched by age, sex, acute coronary syndromes (ACS) event type, and time elapsed between the ACS event and inclusion in the study. Lipid transfer to HDL was evaluated by incubating donor lipid nanoparticles labeled with radioactive unesterified cholesterol (UC) and esterified cholesterol (EC), phospholipid (PL), and triglyceride (TG) with whole plasma. After the chemical precipitation of non-HDL fractions and nanoparticles, the supernatant was counted for HDL radioactivity. Results CAD + ICVE group presented with impaired lipid transfer to HDL for PL (CAD + ICVE: 21.14 +/- 2.7% vs CAD: 21.67 +/- 3.1%, P = .03), TG (CAD + ICVE: 4.88 +/- 0.97% vs CAD: 5.63 +/- 0.92%, P = .002), and UC (CAD + ICVE: 5.55 +/- 1.19% vs CAD: 6.16 +/- 1.14%, P = .009). Lipid transfer to HDL was similar in both groups for EC. Adjusted models showed similar results. Conclusion Patients with CAD and ICVE have reduced lipid transfer to HDL compared to those with CAD only. Dysfunctional HDL may account for the higher incidence of ischemic outcomes observed in this population.
Palavras-chave
CETP, coronary artery disease, high-density lipoproteins (HDL), lipid transfers, stroke, transient ischemic attack
Referências
  1. Acharjee S, 2013, J AM COLL CARDIOL, V62, P1826, DOI 10.1016/j.jacc.2013.07.051
  2. Amarenco P, 2008, ATHEROSCLEROSIS, V196, P489, DOI 10.1016/j.atherosclerosis.2007.07.033
  3. Barter PJ, 2007, NEW ENGL J MED, V357, P2109, DOI 10.1056/NEJMoa0706628
  4. Boden WE, 2011, NEW ENGL J MED, V365, P2255, DOI 10.1056/NEJMoa1107579
  5. Boersma E, 2000, CIRCULATION, V101, P2557, DOI 10.1161/01.CIR.101.22.2557
  6. Cheung MC, 2009, BBA-MOL CELL BIOL L, V1791, P206, DOI 10.1016/j.bbalip.2008.12.010
  7. Consuegra-Sanchez L, 2014, REV ESP CARDIOL, V67, P471, DOI 10.1016/j.rec.2013.10.017
  8. Ducrocq G, 2013, CIRCULATION, V127, P730, DOI 10.1161/CIRCULATIONAHA.112.141572
  9. Gage BF, 2001, JAMA-J AM MED ASSOC, V285, P2864, DOI 10.1001/jama.285.22.2864
  10. GORDON DJ, 1989, CIRCULATION, V79, P8, DOI 10.1161/01.CIR.79.1.8
  11. GORDON T, 1977, AM J MED, V62, P707, DOI 10.1016/0002-9343(77)90874-9
  12. HPS3 TIMI55-REVEAl Collaborative, 2017, NEW ENGL J MED, V377, P1217, DOI 10.1056/NEJMoa1706444
  13. Joy T, 2008, NAT REV DRUG DISCOV, V7, P143, DOI 10.1038/nrd2489
  14. Khera AV, 2011, NEW ENGL J MED, V364, P127, DOI 10.1056/NEJMoa1001689
  15. Kidawa M, 2019, CURR VASC PHARMACOL, V17, P365, DOI 10.2174/1570161116666180601083225
  16. Lo Prete AC, 2009, LIPIDS, V44, P917, DOI 10.1007/s11745-009-3342-2
  17. Madsen CM, 2017, EUR HEART J, V38, P2478, DOI 10.1093/eurheartj/ehx163
  18. Maranhao RC, 2012, CLIN CHIM ACTA, V413, P502, DOI 10.1016/j.cca.2011.11.011
  19. Martinez LRC, 2013, METABOLISM, V62, P1061, DOI 10.1016/j.metabol.2013.02.008
  20. Moscucci M, 2003, EUR HEART J, V24, P1815, DOI 10.1016/S0195-668X(03)00485-8
  21. Mukherjee D, 2007, AM J CARDIOL, V100, P1, DOI 10.1016/j.amjcard.2007.02.046
  22. Nissen SE, 2018, JAMA CARDIOL, V3, P401, DOI 10.1001/jamacardio.2018.0569
  23. Ossoli A, 2016, ENDOCRINOL METAB, V31, P223, DOI 10.3803/EnM.2016.31.2.223
  24. Otocka-Kmiecik A, 2012, PROG LIPID RES, V51, P314, DOI 10.1016/j.plipres.2012.03.003
  25. Pearce N, 2016, BMJ-BRIT MED J, V352, DOI 10.1136/bmj.i969
  26. Riwanto M, 2015, HANDB EXP PHARMACOL, V224, P337, DOI 10.1007/978-3-319-09665-0_10
  27. Rizzo M, 2014, CURR MED CHEM, V21, P2881, DOI 10.2174/0929867321666140414103455
  28. Rosenson RS, 2016, NAT REV CARDIOL, V13, P48, DOI 10.1038/nrcardio.2015.124
  29. Rye KA, 1997, J BIOL CHEM, V272, P3953, DOI 10.1074/jbc.272.7.3953
  30. Schwartz GG, 2012, NEW ENGL J MED, V367, P2089, DOI 10.1056/NEJMoa1206797
  31. Shea S, 2019, ARTERIOSCL THROM VAS, V39, P89, DOI 10.1161/ATVBAHA.118.311366
  32. Speer T, 2013, IMMUNITY, V38, P754, DOI 10.1016/j.immuni.2013.02.009
  33. Sprandel MCO, 2015, CARDIOVASC DIABETOL, V14, DOI 10.1186/s12933-015-0270-8
  34. Tardif JC, 2016, CIRC-CARDIOVASC GENE, V9, P340, DOI 10.1161/CIRCGENETICS.116.001405
  35. Tardif JC, 2015, CIRC-CARDIOVASC GENE, V8, P372, DOI 10.1161/CIRCGENETICS.114.000663
  36. van der Steeg WA, 2008, J AM COLL CARDIOL, V51, P634, DOI 10.1016/j.jacc.2007.09.060
  37. Yadav JS, 2004, NEW ENGL J MED, V351, P1493, DOI 10.1056/NEJMoa040127