Adverse Biventricular Remodeling in Isolated Right Ventricular Hypertension Is Mediated by Increased Transforming Growth Factor-beta 1 Signaling and Is Abrogated by Angiotensin Receptor Blockade

Carregando...
Imagem de Miniatura
Citações na Scopus
72
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER THORACIC SOC
Autores
FRIEDBERG, Mark K.
CHO, Mi-Young
LI, Jing
SUN, Mei
ROHAILLA, Sagar
HONJO, Osami
APITZ, Christian
REDINGTON, Andrew N.
Citação
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, v.49, n.6, p.1019-1028, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The pressure-loaded right ventricle (RV) adversely affects left ventricular (LV) function. We recently found that these ventricular-ventricular interactions lead to LV myocardial fibrosis through transforming growth factor-beta 1 (TGF-beta 1) signaling. We investigated the mechanisms mediating biventricular fibrosis in RV afterload and their potential modification by angiotensin receptor blockade. An adjustable pulmonary artery band (PAB) was placed in rabbits. In sham-operated control rabbits, the band was left uninflated (n = 6). In the RV afterload group, the PAB was sequentially inflated to generate systemic RV pressure at 28 days (n = 8). In a third group, the PAB was inflated to systemic levels, and the angiotensin receptor blocker losartan was added (n = 6). Five weeks after surgery, the animals were killed for assessments of biventricular hypertrophy, fibrosis, apoptosis, and the components of their signaling pathways. PAB animals developed biventricular hypertrophy, fibrosis, and apoptosis, versus sham rabbits, in which these conditions were decreased with losartan. RV and LV TGF-beta 1, connective tissue growth factor (CTGF) (CCN2), endothelin-1 (ET-1), endothelin receptor B, and matrix metalloproteinase 2/9 mRNA levels were increased in PAB animals versus sham animals, and decreased with losartan. Given the marked biventricular CTGF up-regulation in PAB and down-regulation with losartan, we investigated CTGF signaling. RV and LV Smad 2/3/4 protein levels and LV RhoA mRNA levels were increased with PAB and reduced with losartan. In conclusion, isolated RV afterload induces biventricular fibrosis and apoptosis, which are reduced by angiotensin receptor blockade. Adverse ventricular-ventricular interactions induced by isolated RV afterload appear to be mediated through TGF-beta 1-CTGF and ET-1 pathways.
Palavras-chave
right ventricular afterload, ventricular-ventricular interactions, apoptosis, angiotensin receptor blocker
Referências
  1. Abe K, 2004, CIRC RES, V94, P385, DOI 10.1161/01.RES.0000111804.34509.94
  2. Apitz C, 2012, J THORAC CARDIOV SUR, V144, P1494, DOI 10.1016/j.jtcvs.2012.06.027
  3. Assad RS, 2007, ANN THORAC SURG, V84, P2081, DOI 10.1016/j.athoracsur.2007.05.004
  4. Babu-Narayan SV, 2006, CIRCULATION, V113, P405, DOI 10.1161/CIRCULATIONAHA.105.548727
  5. Bartelds B, 2011, EUR J HEART FAIL, V13, P1275, DOI 10.1093/eurjhf/hfr134
  6. Bogaard HJ, 2009, CIRCULATION, V120, P1951, DOI 10.1161/CIRCULATIONAHA.109.883843
  7. Broberg CS, 2011, AM J CARDIOL, V107, P1215, DOI 10.1016/j.amjcard.2010.12.026
  8. Brookes C, 1999, CIRCULATION, V100, P761
  9. Chen MM, 2000, J MOL CELL CARDIOL, V32, P1805, DOI 10.1006/jmcc.2000.1215
  10. Clozel M, 2005, ANN MED, V37, P2, DOI 10.1080/07853890410018925
  11. de Man FS, 2012, AM J RESP CRIT CARE, V186, P780, DOI 10.1164/rccm.201203-0411OC
  12. Faber MJ, 2006, AM J PHYSIOL-HEART C, V291, pH1580, DOI 10.1152/ajpheart.00286.2006
  13. Fernandes FP, 2012, J AM SOC ECHOCARDIOG, V25, P494, DOI 10.1016/j.echo.2012.01.014
  14. Freed BH, 2012, J CARDIOVASC MAGN R, V14, DOI 10.1186/1532-429X-14-11
  15. Gan CTJ, 2006, AM J PHYSIOL-HEART C, V290, pH1528, DOI 10.1152/ajpheart.01031.2005
  16. Geva T, 2004, J AM COLL CARDIOL, V43, P1068, DOI 10.1016/j.jacc.2003.10.045
  17. Hardziyenka M, 2012, J AM COLL CARDIOL, V59, P2193, DOI 10.1016/j.jacc.2012.01.063
  18. Hilfiker A, 2002, CIRCULATION, V106, P254, DOI 10.1161/01.CIR.0000021426.87274.62
  19. Huntgeburth M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026628
  20. Iwanciw D, 2003, ARTERIOSCL THROM VAS, V23, P1782, DOI 10.1161/01.ATV.0000092913.60428.E6
  21. Kobayashi N, 2002, CARDIOVASC RES, V55, P757, DOI 10.1016/S0008-6363(02)00457-1
  22. Kreymborg KG, 2010, J MOL CELL CARDIOL, V49, P598, DOI 10.1016/j.yjmcc.2010.07.014
  23. Leask A, 2008, CELL SIGNAL, V20, P1409, DOI 10.1016/j.cellsig.2008.01.006
  24. Leask A, 2010, CIRC RES, V106, P1675, DOI 10.1161/CIRCRESAHA.110.217737
  25. Leeuwenburgh BPJ, 2001, AM J PHYSIOL-HEART C, V281, pH2697
  26. Liu QH, 2008, PERITON DIALYSIS INT, V28, pS88
  27. Mori T, 1999, J CELL PHYSIOL, V181, P153, DOI 10.1002/(SICI)1097-4652(199910)181:1<153::AID-JCP16>3.0.CO;2-K
  28. Nagendran J, 2009, AM J PHYSIOL-HEART C, V296, pH1723, DOI 10.1152/ajpheart.00380.2009
  29. Nagendran J, 2007, CIRCULATION, V116, P238, DOI 10.1161/CIRCULATIONAHA.106.655266
  30. Nakerakanti SS, 2006, J BIOL CHEM, V281, P25259, DOI 10.1074/jbc.M600466200
  31. Samarakoon R, 2013, CELL SIGNAL, V25, P264, DOI 10.1016/j.cellsig.2012.10.003
  32. Shehata ML, 2011, AM J ROENTGENOL, V196, P87, DOI 10.2214/AJR.09.4114
  33. Shi-wen Xu, 2007, Arthritis Rheum, V56, P4189, DOI 10.1002/art.23134
  34. Sun M, 2003, CIRCULATION, V107, P1046, DOI 10.1161/01.CIR.0000051363.86009.3C
  35. Sun M, 2007, CIRCULATION, V115, P1398, DOI 10.1161/CIRCULATIONAHA.106.643585
  36. Umar S, 2007, PATHOL RES PRACT, V203, P863, DOI 10.1016/j.prp.2007.08.006
  37. Xu EZ, 2010, AM J PHYSIOL-HEART C, V299, pH1854, DOI 10.1152/ajpheart.00595.2010