Tumour-derived transforming growth factor-beta signalling contributes to fibrosis in patients with cancer cachexia

Carregando...
Imagem de Miniatura
Citações na Scopus
43
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
LIMA, Joanna D. C. C.
SIMOES, Estefania
CASTRO, Gabriela de
MORAIS, Mychel Raony P. T.
MATOS-NETO, Emidio M. de
ALVES, Michele J.
I, Nelson Pinto
FIGUEREDO, Raquel G.
ZORN, Telma M. T.
Citação
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, v.10, n.5, p.1045-1059, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Cachexia is a paraneoplastic syndrome related with poor prognosis. The tumour micro-environment contributes to systemic inflammation and increased oxidative stress as well as to fibrosis. The aim of the present study was to characterise the inflammatory circulating factors and tumour micro-environment profile, as potentially contributing to tumour fibrosis in cachectic cancer patients. Methods 74 patients (weight stable cancer n = 31; cachectic cancer n = 43) diagnosed with colorectal cancer were recruited, and tumour biopsies were collected during surgery. Multiplex assay was performed to study inflammatory cytokines and growth factors. Immunohistochemistry analysis was carried out to study extracellular matrix components. Results Higher protein expression of inflammatory cytokines and growth factors such as epidermal growth factor, granulocyte-macrophage colony-stimulating factor, interferon-alpha, and interleukin (IL)-8 was observed in the tumour and serum of cachectic cancer patients in comparison with weight-stable counterparts. Also, IL-8 was positively correlated with weight loss in cachectic patients (P = 0.04; r = 0.627). Immunohistochemistry staining showed intense collagen deposition (P = 0.0006) and increased presence of alpha-smooth muscle actin (P < 0.0001) in tumours of cachectic cancer patients, characterizing fibrosis. In addition, higher transforming growth factor (TGF)-beta 1, TGF-beta 2, and TGF-beta 3 expression (P = 0.003, P = 0.05, and P = 0.047, respectively) was found in the tumour of cachectic patients, parallel to p38 mitogen-activated protein kinase alteration. Hypoxia-inducible factor-1 alpha mRNA content was significantly increased in the tumour of cachectic patients, when compared with weight-stable group (P = 0.005). Conclusions Our results demonstrate TGF-beta pathway activation in the tumour in cachexia, through the (non-canonical) mitogen-activated protein kinase pathway. The results show that during cachexia, intratumoural inflammatory response contributes to the onset of fibrosis. Tumour remodelling, probably by TGF-beta-induced transdifferentiation of fibroblasts to myofibroblasts, induces unbalanced inflammatory cytokine profile, angiogenesis, and elevation of extracellular matrix components (EMC). We speculate that these changes may affect tumour aggressiveness and present consequences in peripheral organs.
Palavras-chave
Tumour micro-environment, Cachexia, Epithelial-mesenchymal components, Fibrosis
Referências
  1. AARONSON NK, 1993, J NATL CANCER I, V85, P365, DOI 10.1093/jnci/85.5.365
  2. Abrigo J, 2018, BIOL CHEM, V399, P253, DOI 10.1515/hsz-2017-0217
  3. Ahir Bhavesh K, 2017, Genes Cancer, V8, P453, DOI 10.18632/genesandcancer.130
  4. Ahmed S, 2017, J CLIN MED, V6, DOI 10.3390/jcm6010005
  5. Alves MJ, 2017, BMC CANCER, V17, DOI 10.1186/s12885-017-3178-8
  6. Anestakis D, 2015, INT J MOL SCI, V16, P1691, DOI 10.3390/ijms16011691
  7. Balani S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15422
  8. Batista ML, 2012, CYTOKINE, V57, P9, DOI 10.1016/j.cyto.2011.10.008
  9. Batista ML, 2016, J CACHEXIA SARCOPENI, V7, P37, DOI 10.1002/jcsm.12037
  10. Bauche D, 2017, CLIN TRANSL IMMUNOL, V6, DOI 10.1038/cti.2017.9
  11. Camargo RG, 2015, NUTRIENTS, V7, P4465, DOI 10.3390/nu7064465
  12. Carbajo-Pescador S, 2013, BRIT J CANCER, V109, P83, DOI 10.1038/bjc.2013.285
  13. Chen YM, 2017, SCI REP-UK, V7, DOI 10.1038/srep45146
  14. Cheruku HR, 2015, EUPA OPEN PROTEOMICS, V8, P104, DOI 10.1016/j.euprot.2015.06.004
  15. Dasgupta A, 2017, CANCER RES
  16. de Matos-Neto EM, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00629
  17. di Trifiletti AA, 2013, CLIN NUTR, V32, P527, DOI 10.1016/j.clnu.2012.11.011
  18. Dimco G, 2010, CELL CYCLE, V9, P4638, DOI 10.4161/cc.9.23.13955
  19. Donohoe CL, 2011, GASTROENT RES PRACT, DOI 10.1155/2011/601434
  20. Ehrmann-Josko A, 2006, SCAND J GASTROENTERO, V41, P1079, DOI 10.1080/00365520600587444
  21. Evans WJ, 2008, CLIN NUTR, V27, P793, DOI 10.1016/j.clnu.2008.06.013
  22. Ghafoory S, 2018, BLOOD ADV, V2, P470, DOI 10.1182/bloodadvances.2017010868
  23. Gleave ME, 2018, ONCOGENESIS
  24. Gurzu S, 2016, WORLD J GASTROENTERO, V22, P6764, DOI 10.3748/wjg.v22.i30.6764
  25. Hardee JP, 2017, OXID MED CELL LONGEV, V2017, P1
  26. Hatzivassiliou G, 2013, NATURE, V501, P232, DOI 10.1038/nature12441
  27. Hinz B, 2015, MATRIX BIOL, V47, P54, DOI 10.1016/j.matbio.2015.05.006
  28. Hix LM, 2013, J BIOL CHEM, V288, P11676, DOI 10.1074/jbc.M112.441402
  29. Hou YC, 2018, J CLIN MED, V7, DOI 10.3390/jcm7120502
  30. Jenkins MH, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121140
  31. Kamio K, 2017, PULM PHARMACOL THER, V44, P61, DOI 10.1016/j.pupt.2017.03.003
  32. Kong XY, 2016, MEDICINE, V95, DOI 10.1097/MD.0000000000002830
  33. Koukourakis MI, 2003, CANCER RES, V63, P5376
  34. Koul Hari K, 2013, Genes Cancer, V4, P342, DOI 10.1177/1947601913507951
  35. Lane D, 2011, BMC CANCER, V11, DOI 10.1186/1471-2407-11-210
  36. Lauber S, 2015, INT J CANCER, V136, P831, DOI 10.1002/ijc.29055
  37. Laviano Alessandro, 2012, Critical Reviews in Oncogenesis, V17, P247
  38. Lee DE, 2017, PHYSIOL GENOMICS, V49, P253, DOI 10.1152/physiolgenomics.00006.2017
  39. Lira FS, 2012, HORM METAB RES, V44, P91, DOI 10.1055/s-0031-1299694
  40. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  41. Long XX, 2016, INT J ONCOL, V48, P5, DOI 10.3892/ijo.2015.3234
  42. Loumaye A, 2015, J CLIN ENDOCR METAB, V100, P2030, DOI 10.1210/jc.2014-4318
  43. Ma JF, 2017, EMBO MOL MED, V9, P622, DOI 10.15252/emmm.201607052
  44. Majchrzak K, 2013, NEUROL NEUROCHIR POL, V47, P325, DOI 10.5114/ninp.2013.36757
  45. Manousopoulou A, 2018, BRIT J CANCER, V118, P1200, DOI 10.1038/s41416-018-0042-9
  46. Meissl K, 2017, CYTOKINE, V89, P12, DOI 10.1016/j.cyto.2015.11.011
  47. Miller A, 2017, ONCOGENE, V36, P3059, DOI 10.1038/onc.2016.437
  48. Molfino A, 2014, CURR OPIN CLIN NUTR, V17, P471, DOI 10.1097/MCO.0000000000000075
  49. Mondello P, 2014, BMC CANCER, V14, DOI 10.1186/1471-2407-14-828
  50. Neveu B, 2014, RES REP UROL, V6, P27, DOI 10.2147/RRU.S58643
  51. Oruqaj G, 2015, P NATL ACAD SCI USA, V112, pE2048, DOI 10.1073/pnas.1415111112
  52. Palena C., 2013, FUTURE ONCOL, V8, P713, DOI [10.2217/fon.12.59.Influence, DOI 10.2217/FON.12.59.INFLUENCE]
  53. Papageorgis P, 2015, J ONCOL, DOI 10.1155/2015/587193
  54. Papageorgis P, 2015, INT J ONCOL, V46, P933, DOI 10.3892/ijo.2015.2816
  55. Patel HJ, 2017, LIFE SCI, V170, P56, DOI 10.1016/j.lfs.2016.11.033
  56. Petanidis S, 2016, INT J BIOCHEM CELL B, V74, P121, DOI 10.1016/j.biocel.2016.02.015
  57. Petruzzelli M, 2016, GENE DEV, V30, P489, DOI 10.1101/gad.276733.115
  58. Neto NIP, 2018, J CACHEXIA SARCOPENI, V9, P1101, DOI 10.1002/jcsm.12345
  59. Porporato PE, 2016, ONCOGENESIS, V5, DOI 10.1038/oncsis.2016.3
  60. Sato M, 2012, RESPIROLOGY, V17, P1048, DOI 10.1111/j.1440-1843.2012.02173.x
  61. Seelaender M, 2015, MEDIAT INFLAMM, DOI 10.1155/2015/536954
  62. Sesterhenn AM, 2012, LARYNGO RHINO OTOL, V91, P375, DOI 10.1055/s-0032-1306363
  63. Shi J, 2016, ONCOL LETT, V11, P1043, DOI 10.3892/ol.2015.4035
  64. Shiono M, 2016, CANCER MED-US, V5, P2641, DOI 10.1002/cam4.841
  65. Tang YA, 2018, P NATL ACAD SCI USA, V115, pE5990, DOI 10.1073/pnas.1801348115
  66. Tauriello DVF, 2018, NATURE, V554, P538, DOI 10.1038/nature25492
  67. Tichet M, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7993
  68. Tsoli M, 2016, SEMIN CELL DEV BIOL, V54, P68, DOI 10.1016/j.semcdb.2015.10.039
  69. Vaitkus JA, 2017, EXP BIOL MED, V242, P473, DOI 10.1177/1535370216683282
  70. Vanderveen B. N., 2017, OXID MED CELL LONGEV, V2017, P24
  71. von Haehling S, 2017, J CACHEXIA SARCOPENI, V8, P1081, DOI 10.1002/jcsm.12261
  72. Wang G, 2018, NAT MED, V24, P770, DOI 10.1038/s41591-018-0054-2
  73. Wong GS, 2013, ONCOGENESIS, V2, DOI 10.1038/oncsis.2013.17
  74. Wu M, 2016, ONCOTARGET, V7, P44534, DOI 10.18632/oncotarget.10003
  75. Yazdani S, 2017, ADV DRUG DELIVER REV, V121, P101, DOI 10.1016/j.addr.2017.07.010
  76. Zhang GH, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00726-x
  77. Zhang L, 2016, OXID MED CELL LONGEV, V2016, P1, DOI 10.3389/FPSYG.2016.00908
  78. Zhao ZW, 2017, ONCOL LETT, V13, P4577, DOI 10.3892/ol.2017.6034