Cachexia causes time-dependent activation of the inflammasome in the liver

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
NEVES, Rodrigo Xavier das
YAMASHITA, Alex S.
RICCARDI, Daniela M. R.
KOHN-GAONE, Julia
CAMARGO, Rodolfo G.
NETO, Nelson I.
CAETANO, Daniela
SANTOS, Felipe H.
LIMA, Joanna D. C. C.
Citação
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, v.14, n.4, p.1621-1630, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundCachexia is a wasting syndrome associated with systemic inflammation and metabolic disruption. Detection of the early signs of the disease may contribute to the effective attenuation of associated symptoms. Despite playing a central role in the control of metabolism and inflammation, the liver has received little attention in cachexia. We previously described relevant disruption of metabolic pathways in the organ in an animal model of cachexia, and herein, we adopt the same model to investigate temporal onset of inflammation in the liver. The aim was thus to study inflammation in rodent liver in the well-characterized cachexia model of Walker 256 carcinosarcoma and, in addition, to describe inflammatory alterations in the liver of one cachectic colon cancer patient, as compared to one control and one weight-stable cancer patient. MethodsColon cancer patients (one weight stable [WSC] and one cachectic [CC]) and one patient undergoing surgery for cholelithiasis (control, n = 1) were enrolled in the study, after obtainment of fully informed consent. Eight-week-old male rats were subcutaneously inoculated with a Walker 256 carcinosarcoma cell suspension (2 x 10(7) cells in 1.0 mL; tumour-bearing [T]; or phosphate-buffered saline-controls [C]). The liver was excised on Days 0 (n = 5), 7 (n = 5) and 14 (n = 5) after tumour cell injection. ResultsIn rodent cachexia, we found progressively higher numbers of CD68(+) myeloid cells in the liver along cancer-cachexia development. Similar findings are described for CC, whose liver showed infiltration of the same cell type, compared with both WSC and control patient organs. In advanced rodent cachexia, hepatic phosphorylated c-Jun N-terminal kinase protein content and the inflammasome pathway protein expression were increased in relation to baseline (P < 0.05). These changes were accompanied by augmented expression of the active interleukin-1 beta (IL-1 beta) form (P < 0.05 for both circulating and hepatic content). ConclusionsThe results show that cancer cachexia is associated with an increase in the number of myeloid cells in rodent and human liver and with modulation of hepatic inflammasome pathway. The latter contributes to the aggravation of systemic inflammation, through increased release of IL-1 beta.
Palavras-chave
cancer cachexia, inflammasome, inflammation, liver, myeloid cells
Referências
  1. Alves MJ, 2017, BMC CANCER, V17, DOI 10.1186/s12885-017-3178-8
  2. [Anonymous], 2013, MEDIAT INFLAMM, DOI 10.1155/2013/678627
  3. Argilés JM, 2014, NAT REV CANCER, V14, P754, DOI 10.1038/nrc3829
  4. Argilés JM, 2010, J AM MED DIR ASSOC, V11, P229, DOI 10.1016/j.jamda.2010.02.004
  5. Batista ML, 2016, J CACHEXIA SARCOPENI, V7, P37, DOI 10.1002/jcsm.12037
  6. Beluzi M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122660
  7. Bertola A, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013577
  8. Camargo RG, 2015, NUTRIENTS, V7, P4465, DOI 10.3390/nu7064465
  9. Chu XQ, 2021, EXP EYE RES, V202, DOI 10.1016/j.exer.2020.108335
  10. Donatto FF, 2013, CYTOKINE, V61, P426, DOI 10.1016/j.cyto.2012.10.021
  11. Dumas JF, 2011, J HEPATOL, V54, P320, DOI 10.1016/j.jhep.2010.08.012
  12. Fearon K, 2011, LANCET ONCOL, V12, P489, DOI 10.1016/S1470-2045(10)70218-7
  13. Gonçalves DC, 2019, CLIN NUTR, V38, P2219, DOI 10.1016/j.clnu.2018.09.023
  14. Kamari Y, 2011, J HEPATOL, V55, P1086, DOI 10.1016/j.jhep.2011.01.048
  15. Kazantzis M, 2005, CELL TISSUE RES, V321, P419, DOI 10.1007/s00441-005-1138-0
  16. Kodama Y, 2009, GASTROENTEROLOGY, V137, P1467, DOI 10.1053/j.gastro.2009.06.045
  17. Lira FS, 2008, CELL BIOCHEM FUNCT, V26, P701, DOI 10.1002/cbf.1495
  18. Lira FS, 2010, HORM METAB RES, V42, P944, DOI 10.1055/s-0030-1267949
  19. Lira FS, 2011, NUTR METAB, V8, DOI 10.1186/1743-7075-8-60
  20. Machado AP, 2004, CELL TISSUE RES, V318, P503, DOI 10.1007/s00441-004-0987-2
  21. Martignoni ME, 2009, ONCOL REP, V21, P363, DOI 10.3892/or_00000231
  22. Negrin KA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107265
  23. Neves RX, 2016, J CACHEXIA SARCOPENI, V7, P193, DOI 10.1002/jcsm.12041
  24. Reynolds CM, 2012, MOL NUTR FOOD RES, V56, P1212, DOI 10.1002/mnfr.201200058
  25. Robinson MW, 2016, CELL MOL IMMUNOL, V13, P267, DOI 10.1038/cmi.2016.3
  26. Rohm M, 2019, EMBO REP, V20, DOI 10.15252/embr.201847258
  27. Seelaender MCL, 1999, CELL BIOCHEM FUNCT, V17, P151, DOI 10.1002/(SICI)1099-0844(199909)17:3<151::AID-CBF820>3.0.CO;2-K
  28. Seelaender MCL, 1998, BIOCHEM MOL BIOL INT, V44, P185
  29. Sica A, 2014, HEPATOLOGY, V59, P2034, DOI 10.1002/hep.26754
  30. Silvério R, 2012, AMINO ACIDS, V42, P1783, DOI 10.1007/s00726-011-0898-y
  31. STRELKOV AB, 1989, AM J PHYSIOL, V257, pC261, DOI 10.1152/ajpcell.1989.257.2.C261
  32. TAKEZAWA R, 1995, J BIOCHEM, V118, P1175, DOI 10.1093/oxfordjournals.jbchem.a125004
  33. Tang TF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081949
  34. Tisdale MJ, 2009, PHYSIOL REV, V89, P381, DOI 10.1152/physrev.00016.2008
  35. van de Worp WRPH, 2020, FRONT NUTR, V7, DOI 10.3389/fnut.2020.601329
  36. Xi Y, 2021, TRANSL ONCOL, V14, DOI 10.1016/j.tranon.2021.101174
  37. Zitvogel L, 2012, NAT IMMUNOL, V13, P343, DOI 10.1038/ni.2224