Investigation of Central Nervous System Dysfunction in Chronic Pelvic Pain Using Magnetic Resonance Spectroscopy and Noninvasive Brain Stimulation

Carregando...
Imagem de Miniatura
Citações na Scopus
43
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY-BLACKWELL
Autores
REIDLER, Jay S.
MACEA, Debora Duarte
DUARTE, Ingrid Moreno
WANG, Xiaoen
LENKINSKI, Robert
PETROZZA, John C.
FREGNI, Felipe
Citação
PAIN PRACTICE, v.15, n.5, p.423-432, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundRecent studies demonstrate that chronic pelvic pain is associated with altered afferent sensory input resulting in maladaptive changes in the neural circuitry of pain. To better understand the central changes associated with chronic pelvic pain, we investigated the contributions of critical pain-related neural circuits using single-voxel proton magnetic resonance spectroscopy (MRS) and transcranial direct current stimulation (tDCS). MethodsWe measured concentrations of neural metabolites in 4 regions of interest (thalamus, anterior cingulate cortex, primary motor, and occipital cortex [control]) at baseline and after 10days of active or sham tDCS in patients with chronic pelvic pain. We then compared our results to those observed in healthy controls, matched by age and gender. ResultsWe observed a significant increase in pain thresholds after active tDCS compared with sham conditions. There was a correlation between metabolite concentrations at baseline and quantitative sensory assessments. Chronic pelvic pain patients had significantly lower levels of NAA/Cr in the primary motor cortex compared with healthy patients. ConclusionstDCS increases pain thresholds in patients with chronic pelvic pain. Biochemical changes in pain-related neural circuits are associated with pain levels as measured by objective pain testing. These findings support the further investigation of targeted cortical neuromodulatory interventions for chronic pelvic pain.
Palavras-chave
chronic pelvic pain, brain stimulation, transcranial direct current stimulation, tDCS, magnetic resonance spectroscopy
Referências
  1. BRAND A, 1993, DEV NEUROSCI-BASEL, V15, P289, DOI 10.1159/000111347
  2. Brunoni AR, 2011, INT J NEUROPSYCHOPH, V14, P1133, DOI 10.1017/S1461145710001690
  3. Cecilio SB, 2008, AM J OBSTET GYNECOL, V199, pE6, DOI 10.1016/j.ajog.2008.08.034
  4. Fayed N, 2012, ACTA PSYCHIAT SCAND, V126, P115, DOI 10.1111/j.1600-0447.2011.01820.x
  5. Fayed N, 2010, ARTHRITIS RES THER, V12, DOI 10.1186/ar3072
  6. Fenton BW, 2007, MED HYPOTHESES, V69, P282, DOI 10.1016/j.mehy.2006.12.025
  7. Fenton BW, 2009, BRAIN STIMUL, V2, P103, DOI 10.1016/j.brs.2008.09.009
  8. Feraco P, 2011, AM J NEURORADIOL, V32, P1585, DOI 10.3174/ajnr.A2550
  9. Fregni F, 2006, ARTHRITIS RHEUM, V54, P3988, DOI 10.1002/art.22195
  10. Fregni F, 2007, LANCET NEUROL, V6, P188, DOI 10.1016/S1474-4422(07)70032-7
  11. Fregni F, 2006, PAIN, V122, P197, DOI 10.1016/j.pain.2006.02.023
  12. Fukui S, 2006, MAGN RESON IMAGING, V24, P75, DOI 10.1016/j.mri.2005.10.021
  13. Gandiga PC, 2006, CLIN NEUROPHYSIOL, V117, P845, DOI 10.1016/j.clinph.2005.12.003
  14. Garcia-Larrea L, 1999, PAIN, V83, P259
  15. Garcia-Larrea L, 1997, STEREOT FUNCT NEUROS, V68, P141, DOI 10.1159/000099915
  16. Govindaraju V, 2000, NMR BIOMED, V13, P129, DOI 10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.3.CO;2-M
  17. Grace Victoria, 2006, Health Care Women Int, V27, P585, DOI 10.1080/07399330600803725
  18. Grachev ID, 2000, PAIN, V89, P7, DOI 10.1016/S0304-3959(00)00340-7
  19. Gussew A, 2010, NEUROIMAGE, V49, P1895, DOI 10.1016/j.neuroimage.2009.09.007
  20. Gussew A, 2011, NEUROIMAGE, V54, P1315, DOI 10.1016/j.neuroimage.2010.09.039
  21. Harris RE, 2009, ARTHRITIS RHEUM, V60, P3146, DOI 10.1002/art.24849
  22. Knotkova H, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00628
  23. Lang N, 2005, EUR J NEUROSCI, V22, P495, DOI 10.1111/j.1460-9568.2005.04233.x
  24. Lefaucheur JP, 2001, NEUROPHYSIOL CLIN, V31, P247, DOI 10.1016/S0987-7053(01)00260-X
  25. Lima MC, 2008, NEUROLOGY, V70, P2329, DOI 10.1212/01.wnl.0000314649.38527.93
  26. Mullins PG, 2005, NEUROIMAGE, V26, P642, DOI 10.1016/j.neuroimage.2005.02.001
  27. Nitsche MA, 2000, J PHYSIOL-LONDON, V527, P633, DOI 10.1111/j.1469-7793.2000.t01-1-00633.x
  28. Pattany PM, 2002, AM J NEURORADIOL, V23, P901
  29. Peyron R, 2000, PAIN, V84, P77, DOI 10.1016/S0304-3959(99)00190-6
  30. PEYRON R, 1995, PAIN, V62, P275, DOI 10.1016/0304-3959(94)00211-V
  31. Reidler JS, 2012, J PAIN, V13, P450, DOI 10.1016/j.jpain.2012.01.005
  32. Savidge CJ, 1997, J PSYCHOSOM RES, V42, P433, DOI 10.1016/S0022-3999(96)00300-5
  33. Sharma Neena K, 2011, J Pain Res, V4, P143, DOI 10.2147/JPR.S19297
  34. Sorensen L, 2008, DIABETES CARE, V31, P980, DOI 10.2337/dc07-2088
  35. Staud R, 2012, J PAIN, V13, P725, DOI 10.1016/j.jpain.2012.04.006
  36. Strafella AP, 2004, EUR J NEUROSCI, V20, P2245, DOI 10.1111/j.1460-9568.2004.03669.x
  37. Tsubokawa T, 1991, Acta Neurochir Suppl (Wien), V52, P137
  38. Valdes M, 2010, ARTHRITIS RHEUM-US, V62, P1829, DOI 10.1002/art.27430
  39. Woolf CJ, 2007, ANESTHESIOLOGY, V106, P864, DOI 10.1097/01.anes.0000264769.87038.55