Microevolution of Aedes aegypti

Carregando...
Imagem de Miniatura
Citações na Scopus
42
Tipo de produção
article
Data de publicação
2015
Editora
PUBLIC LIBRARY SCIENCE
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
LOUISE, Caroline
VIDAL, Paloma Oliveira
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PLOS ONE, v.10, n.9, article ID e0137851, 16p, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall F-st = 0.0358) and 18 wing landmarks (quantitative estimator Q(st) = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Q(st)>F-st) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have yet to be investigated.
Palavras-chave
Referências
  1. Chambers EW, 2007, J HERED, V98, P202, DOI 10.1093/jhered/esm015
  2. Mendonca BAA, 2014, ACTA TROP, V134, P80, DOI 10.1016/j.actatropica.2014.02.014
  3. Cator LJ, 2009, SCIENCE, V323, P1077, DOI 10.1126/science.1166541
  4. Kalinowski ST, 2005, MOL ECOL NOTES, V5, P187, DOI 10.1111/j.1471-8286.2004.00845.x
  5. Endersby NM, 2011, J MED ENTOMOL, V48, P999, DOI 10.1603/ME10264
  6. NEI M, 1978, GENETICS, V89, P583
  7. Pritchard JK, 2000, GENETICS, V155, P945
  8. Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x
  9. Klingenberg CP, 2010, NAT REV GENET, V11, P623, DOI 10.1038/nrg2829
  10. Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x
  11. Henry A, 2010, INFECT GENET EVOL, V10, P207, DOI 10.1016/j.meegid.2009.12.001
  12. Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x
  13. Dujardin JP, 2008, INFECT GENET EVOL, V8, P875, DOI 10.1016/j.meegid.2008.07.011
  14. TAUTZ D, 1989, NUCLEIC ACIDS RES, V17, P6463, DOI 10.1093/nar/17.16.6463
  15. Campos M, 2012, ECOL EVOL, V2, P2794, DOI 10.1002/ece3.392
  16. Belkhir K, 2004, 5000 CNRS UMR LAB GE
  17. Bookstein FL, 1997, MORPHOMETRIC TOOLS L
  18. Brown JE, 2013, J MED ENTOMOL, V50, P294, DOI 10.1603/ME12173
  19. Brown JE, 2011, P ROY SOC B-BIOL SCI, V278, P2446, DOI 10.1098/rspb.2010.2469
  20. Calle DA, 2002, MEM I OSWALDO CRUZ, V97, P1191, DOI 10.1590/S0074-02762002000800021
  21. Delatte H, 2013, PLOS NEGLECT TROP D, V7, P10
  22. Demari-Silva B, 2014, PARASITE VECTOR, V7, P9
  23. Dujardin JP, 2006, THE CLICK PACKAGE
  24. Epstein PR, 2000, SCI AM, V283, P50
  25. Felsenstein J, 2005, PHYLIP PHYLOGENY INF
  26. Fonseca DM, 2010, MOL ECOL, V19, P1559, DOI 10.1111/j.1365-294X.2010.04576.x
  27. Forattini OP, 2002, CULICIDOLOGIA MED
  28. Gloria-Soria A, 2014, PLOS NEGLECTED TROPI, V8
  29. Herrera F, 2006, MEM I OSWALDO CRUZ, V101, P625, DOI 10.1590/S0074-02762006000600008
  30. Huber K, 2001, MOL ECOL NOTES, V1, P219, DOI 10.1046/j.1471-8278 .2001.00077.x
  31. Jirakanjanakit N, 2008, INFECT GENET EVOL, V8, P414, DOI 10.1016/j.meegid.2007.05.004
  32. Jirakanjanakit N, 2007, TROP MED INT HEALTH, V12, P1354, DOI 10.1111/j.1365-3156.2007.01919.x
  33. KLACZKO LB, 1990, NATURE, V346, P321, DOI 10.1038/346321a0
  34. Monteiro FA, 2014, PLOS NEGLECTED TROPI, V8
  35. Motoki MT, 2012, INFECT GENET EVOL, V12, P1246, DOI 10.1016/j.meegid.2012.04.002
  36. Olanratmanee P, 2013, PLOS NEGLECT TROP D, V7, P8
  37. Paupy C, 2012, INFECT GENET EVOL, V12, P1260, DOI 10.1016/j.meegid.2012.04.012
  38. Rambaut A., FIGTREE V1 4 0 TREE
  39. Rasheed SB, 2013, MED VET ENTOMOL, V27, P430, DOI 10.1111/mve.12001
  40. RAYMOND M, 1995, J HERED, V86, P248
  41. RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.2307/2409177
  42. Rohlf FJ, 2004, TPSDIG
  43. Rohlf FJ, 2005, TPSREGR
  44. Rohlf F.J., 2010, TPSRELW
  45. Rohlf FJ, 2010, TPSUTIL
  46. Slotman MA, 2007, MOL ECOL NOTES, V7, P168, DOI 10.1111/j.1471-8286.2006.01533.x
  47. Vargas REM, 2013, INFECT GENET EVOL, V13, P242, DOI 10.1016/j.meegid.2012.08.008
  48. Vidal PO, 2012, INFECT GENET EVOL, V12, P591, DOI 10.1016/j.meegid.2011.11.013
  49. Vidal PO, 2012, MEM I OSWALDO CRUZ, V107, P1030, DOI 10.1590/S0074-02762012000800011
  50. da Costa-Ribeiro MCV, 2006, MEM I OSWALDO CRUZ, V101, P917, DOI 10.1590/S0074-02762006000800015
  51. WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.2307/2408641
  52. Whitlock MC, 1999, GENET RES, V74, P215, DOI 10.1017/S0016672399004127
  53. Wilke ABB, 2014, PARASITE VECTOR, V7, DOI 10.1186/s13071-014-0468-8