Correlation between carotid bifurcation calcium burden on non-enhanced CT and percentage stenosis, as confirmed by digital subtraction angiography

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2012
Editora
BRITISH INST RADIOLOGY
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
SARIKAYA, B.
LOHMAN, B.
MCKINNEY, A. M.
GADANI, S.
IRFAN, M.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BRITISH JOURNAL OF RADIOLOGY, v.85, n.1015, p.E284-E292, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: Previous evidence supports a direct relationship between the calcium burden (volume) on post-contrast CT with the percent internal carotid artery (ICA) stenosis at the carotid bifurcation. We sought to further investigate this relationship by comparing non-enhanced CT (NECT) and digital subtraction angiography (DSA). Methods: 50 patients (aged 41-82 years) were retrospectively identified who had undergone cervical NECT and DSA. A 64-multidetector array CT (MDCT) scanner was utilised and the images reviewed using preset window widths/levels (30/300) optimised to calcium, with the volumes measured via three-dimensional reconstructive software. Stenosis measurements were performed on DSA and luminal diameter stenoses >40% were considered ""significant"". Volume thresholds of 0.01, 0.03, 0.06, 0.09 and 0.12 cm(3) were utilised and Pearson's correlation coefficient (r) was calculated to correlate the calcium volume with percent stenosis. Results: Of 100 carotid bifurcations, 88 were available and of these 7 were significantly stenotic. The NECT calcium volume moderately correlated with percent stenosis on DSA r=0.53 (p<0.01). A moderate-strong correlation was found between the square root of calcium volume on NECT with percent stenosis on DSA (r=0.60, p<0.01). Via a receiver operating characteristic curve, 0.06 cm(3) was determined to be the best threshold (sensitivity 100%, specificity 90.1%, negative predictive value 100% and positive predictive value 46.7%) for detecting significant stenoses. Conclusion: This preliminary investigation confirms a correlation between carotid bifurcation calcium volume and percent ICA stenosis and is promising for the optimal threshold for stenosis detection. Future studies could utilise calcium volumes to create a ""score"" that could predict high grade stenosis.
Palavras-chave
Referências
  1. AGATSTON AS, 1990, J AM COLL CARDIOL, V15, P827
  2. Al-Mutairy Abdulrahman, 2009, Surg Neurol, V71, P197, DOI 10.1016/j.surneu.2007.10.017
  3. Arad Y, 1996, CIRCULATION, V93, P1951
  4. ARBEILLE P, 1995, J CLIN ULTRASOUND, V23, P113, DOI 10.1002/jcu.1870230206
  5. Ballotta E, 2000, J SURG RES, V89, P78, DOI 10.1006/jsre.1999.5809
  6. Barnett HJM, 1998, NEW ENGL J MED, V339, P1415, DOI 10.1056/NEJM199811123392002
  7. Bartlett ES, 2006, AM J NEURORADIOL, V27, P13
  8. Broderick LS, 1996, AM J ROENTGENOL, V167, P439
  9. Choudhary G, 2010, J NUCL CARDIOL, V17, P45, DOI 10.1007/s12350-009-9158-x
  10. Dahl T, 2008, INT ANGIOL, V27, P142
  11. Diederichsen ACP, 2009, SCAND CARDIOVASC J, V43, P337, DOI 10.1080/14017430902785501
  12. Erbay S, 2007, NEURORADIOLOGY, V49, P27, DOI 10.1007/s00234-006-0159-z
  13. WARLOW C, 1991, LANCET, V337, P1235
  14. Fanning NF, 2006, AM J NEURORADIOL, V27, P378
  15. GLAGOV S, 1987, NEW ENGL J MED, V316, P1371, DOI 10.1056/NEJM198705283162204
  16. Glodny B, 2009, EUR RADIOL, V19, P1661, DOI 10.1007/s00330-009-1345-2
  17. Graebe M, 2010, JACC-CARDIOVASC IMAG, V3, P289, DOI 10.1016/j.jcmg.2010.01.001
  18. Hoffmann U, 2003, RADIOLOGY, V229, P375, DOI 10.1148/radiol.2292021016
  19. Katano H, 2007, STROKE, V38, P3040, DOI 10.1161/STROKEAHA.107.490581
  20. Khoury MJ, 2003, NEW ENGL J MED, V348, P50
  21. Li FY, 2010, J MAGN RESON IMAGING, V31, P168, DOI 10.1002/jmri.22014
  22. Lloyd-Jones D, 2009, CIRCULATION, V119, P480, DOI 10.1161/CIRCULATIONAHA.108.191259
  23. Lovett JK, 2004, CIRCULATION, V110, P2190, DOI 10.1161/01.CIR.0000144307.82502.32
  24. Malhotra AK, 2007, ANN SURG, V246, P632, DOI 10.1097/SLA.0b013e3181568cab
  25. MAYBERG MR, 1991, JAMA-J AM MED ASSOC, V266, P3289, DOI 10.1001/jama.266.23.3289
  26. McCarthy MJ, 1999, J VASC SURG, V30, P261, DOI 10.1016/S0741-5214(99)70136-9
  27. McKinney A, 2005, NEURORADIOLOGY, V47, P1, DOI 10.1007/s00234-004-1301-4
  28. Muller M, 2001, J VASC SURG, V34, P1090, DOI 10.1067/mva.2001.118581
  29. Naghavi M, 2003, CIRCULATION, V108, P1664, DOI 10.1161/01.CIR.0000087480.94275.97
  30. Nandalur KR, 2006, AM J ROENTGENOL, V186, P547, DOI 10.2214/AJR.04.1216
  31. Nandalur KR, 2007, STROKE, V38, P935, DOI 10.1161/01.STR.0000257995.74834.92
  32. TAYLOR DW, 1991, NEW ENGL J MED, V325, P445
  33. Provenzale JM, 2009, AM J ROENTGENOL, V193, P1167, DOI 10.2214/AJR.08.1688
  34. Pugliese F, 2007, RADIOL MED, V112, P435, DOI 10.1007/s11547-007-0152-6
  35. Rozie S, 2009, EUR RADIOL, V19, P2294, DOI 10.1007/s00330-009-1394-6
  36. SIMONS DB, 1992, J AM COLL CARDIOL, V20, P1118
  37. Taoka T, 2006, J COMPUT ASSIST TOMO, V30, P624, DOI 10.1097/00004728-200607000-00012
  38. WHITE JE, 1994, AM SURGEON, V60, P340
  39. Wintermark M, 2008, ANN NEUROL, V64, P149, DOI 10.1002/ana.21424
  40. Wintermark M, 2008, AM J NEURORADIOL, V29, P875, DOI 10.3174/ajnr.A0950
  41. Zhao XH, 2010, INVEST RADIOL, V45, P36, DOI 10.1097/RLI.0b013e3181beada7
  42. [Anonymous], 1998, LANCET, V351, P1379