Unmasking atrial repolarization to assess alternans, spatiotemporal heterogeneity, and susceptibility to atrial fibrillation

Carregando...
Imagem de Miniatura
Citações na Scopus
31
Tipo de produção
article
Data de publicação
2016
Editora
ELSEVIER SCIENCE INC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
VERRIER, Richard L.
NEARING, Bruce D.
RAJAMANI, Sridharan
BELARDINELLI, Luiz
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
HEART RHYTHM, v.13, n.4, p.953-961, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND Detection of atrial repolarization waves free of far field signal contamination by ventricular activation would allow investigation of atrial electrophysiology and factors that influence susceptibility to atrial tachycardia and atrial fibrillation (AF). OBJECTIVE The purpose of this study was to identify means for high-resolution intracardiac recording of atrial repolarization (T-a) waves using standard clinical electrocatheters and to assess fundamental electrophysiologic properties relevant to AF risk. METHODS In alpha-chloralose anesthetized Yorkshire pigs, we studied effects of vagus nerve stimulation (VNS) on PTa and QT intervals and effects of acute atrial ischemia or administration of intrapericardial acetylcholine followed by intravenous epinephrine on susceptibility to AF. RESULTS Electrocatheters with closely spaced (1-mm) electrode pairs yielded high-resolution tracings of atrial repolarization waves. These recordings permitted detection of differential effects of right or left VNS, which shortened atrial PTa interval by 30% vs 21% (P < .01) and lengthened QT interval by 1.5% vs 9%, respectively (P < .05). During atrial ischemia, STa segments were elevated 3.4 fold (P < .01), and the threshold for inducing AF was reduced 3.1-fold (P = .004). Ischemia amplified atrial T-wave alternans (TWA(a)) and spatiotemporal heterogeneity (TWHa) by 23- and 13-fold, respectively, in inverse correlation to AF threshold (r = 0.74, P < .01; r = 0.61, P = .03). TWA(a) and TWHa increased by 4.5- and 2-fold shortly before autonomically triggered atrial premature beats and AF. CONCLUSION This study used standard electrocatheters to demonstrate that TWA(a) and TWHa analysis provides means to assess vulnerability to AF without provocative electrical stimuli. These parameters could be evaluated in the clinical electrophysiology laboratory to determine risk for this prevalent arrhythmia and efficacy of contemporary and new agents.
Palavras-chave
Atrial fibrillation, Vagus nerve stimulation, Electrode catheter, Catecholamines, Monophasic action potential, Myocardial ischemia, Electrophysiologic mapping, Repolarization alternans, Repolarization heterogeneity, Cardiac electrophysiologic testing
Referências
  1. Alasady M, 2011, HEART RHYTHM, V8, P955, DOI 10.1016/j.hrthm.2011.02.016
  2. MOORE EN, 1975, ARCH INTERN MED, V135, P446, DOI 10.1001/archinte.135.3.446
  3. Jousset F, 2012, J CARDIOVASC ELECTR, V23, P1003, DOI 10.1111/j.1540-8167.2012.02336.x
  4. Comtois P, 2012, J CARDIOVASC ELECTR, V23, P1013, DOI 10.1111/j.1540-8167.2012.02391.x
  5. Franz MR, 1999, CARDIOVASC RES, V41, P25, DOI 10.1016/S0008-6363(98)00268-5
  6. Kumar K, 2009, J CARDIOVASC ELECTR, V20, P796, DOI 10.1111/j.1540-8167.2009.01437.x
  7. Antzelevitch C, 2007, HEART RHYTHM, V4, P964, DOI 10.1016/j.hrthm.2007.03.036
  8. Bonatti R, 2014, HEART RHYTHM, V11, P1827, DOI 10.1016/j.hrthm.2014.06.017
  9. Franz MR, 2012, EUROPACE, V14, pV58, DOI 10.1093/europace/eus273
  10. Nearing BD, 2012, CIRC-ARRHYTHMIA ELEC, V5, P84, DOI 10.1161/CIRCEP.111.965434
  11. Miyauchi Y, 2003, CIRCULATION, V108, P360, DOI 10.1161/01.CIR.0000080327.32573.7C
  12. Weiss JN, 2000, CIRC RES, V87, P1103
  13. Burashnikov A, 2010, J AM COLL CARDIOL, V56, P1216, DOI 10.1016/j.jacc.2010.08.600
  14. Nearing BD, 2015, ANN NONINVAS ELECTRO, V20, P273, DOI 10.1111/anec.12205
  15. Narayan SM, 2011, HEART RHYTHM, V8, P244, DOI 10.1016/j.hrthm.2010.10.020
  16. DIFRANCESCO D, 1989, SCIENCE, V243, P669, DOI 10.1126/science.2916119
  17. Olshansky B, 2005, PROG CARDIOVASC DIS, V48, P57, DOI 10.1016/j.pcad.2005.06.004
  18. Nearing BD, 2002, J APPL PHYSIOL, V92, P541
  19. Shen MJ, 2014, CIRC RES, V114, P1004, DOI 10.1161/CIRCRESAHA.113.302549
  20. Sharifov OF, 2004, J AM COLL CARDIOL, V43, P483, DOI 10.1016/j.jacc.2003.09.030
  21. Allessie MA, 2001, CIRCULATION, V103, P769
  22. Narayan SM, 2011, CIRCULATION, V123, P2922, DOI 10.1161/CIRCULATIONAHA.110.977827
  23. Nearing BD, 2003, J APPL PHYSIOL, V95, P2265, DOI 10.1152/japplphysiol.00623.2003
  24. Bettoni M, 2002, CIRCULATION, V105, P2753, DOI 10.1161/01.CIR.0000018443.44005.D8
  25. KOLMAN BS, 1976, AM J CARDIOL, V37, P1041, DOI 10.1016/0002-9149(76)90421-5
  26. Verrier RL, 2013, HEART RHYTHM, V10, P121, DOI 10.1016/j.hrthm.2012.09.015
  27. Cutler MJ, 2009, HEART RHYTHM, V6, pS22, DOI 10.1016/j.hrthm.2008.10.007
  28. Kentta TV, HEART RHYTH IN PRESS
  29. Monigatti-Tenkorang J, 2014, J CARDIOVASC ELECTR, V25, P418, DOI 10.1111/jce.12353
  30. Verrier RL, 2011, J AM COLL CARDIOL, V44, P1309