DOES RECTUS FEMORIS TRANSFER INCREASE KNEE FLEXION DURING STANCE PHASE IN CEREBRAL PALSY?

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2016
Editora
ATHA COMUNICACAO & EDITORA
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
BLUMETTI, Francesco Camara
KAWAMURA, Catia Miyuki
CARDOSO, Michelle de Oliveira
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
ACTA ORTOPEDICA BRASILEIRA, v.24, n.1, p.27-31, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: To evaluate whether distal rectus femoris transfer (DRFT) is related to postoperative increase of knee flexion during the stance phase in cerebral palsy (CP). Methods: The inclusion criteria were Gross Motor Function Classification System (GMFCS) levels I-III, kinematic criteria for stiff-knee gait at baseline, and individuals who underwent orthopaedic surgery and had gait analyses performed before and after intervention. The patients included were divided into the following two groups: NO-DRFT (133 patients), which included patients who underwent orthopaedic surgery without DRFT, and DRFT (83 patients), which included patients who underwent orthopaedic surgery that included DRFT. The primary outcome was to evaluate in each group if minimum knee flexion in stance phase (FMJFA) changed after treatment. Results: The mean FMJFA increased from 13.19 degrees to 16.74 degrees (p=0.003) and from 10.60 degrees to 14.80 degrees (p=0.001) in Groups NO-DRFT and DRFT, respectively. The post-operative FMJFA was similar between groups NO-DRFT and DRFT (p=0.534). The increase of FMJFA during the second exam (from 13.01 degrees to 22.51 degrees) was higher among the GMFCS III patients in the DRFT group (p<0.001). Conclusion: In this study, DRFT did not generate additional increase of knee flexion during stance phase when compared to the control group.
Palavras-chave
Knee joint, Gait, Range of motion, articular, Cerebral palsy
Referências
  1. Morais MC, 2006, J PEDIATR ORTHOPED, V26, P260
  2. Carney BT, 2006, J PEDIATR ORTHOPED, V26, P265
  3. Schwartz MH, 2008, GAIT POSTURE, V28, P351, DOI 10.1016/j.gaitpost.2008.05.001
  4. Palisano RJ, 2000, PHYS THER, V80, P974
  5. Rethlefsen S, 1999, J PEDIATR ORTHOP B, V8, P75
  6. OUNPUU S, 1993, J PEDIATR ORTHOPED, V13, P331
  7. SUTHERLAND DH, 1990, J PEDIATR ORTHOPED, V10, P433
  8. SUTHERLAND DH, 1980, J BONE JOINT SURG AM, V62, P354
  9. OUNPUU S, 1993, J PEDIATR ORTHOPED, V13, P325
  10. Rethlefsen SA, 2009, J PEDIATR ORTHOP B, V18, P58, DOI 10.1097/BPB.0b013e3283298981
  11. DAVIS RB, 1991, HUM MOVEMENT SCI, V10, P575, DOI 10.1016/0167-9457(91)90046-Z
  12. Bell KJ, 2002, J PEDIATR ORTHOPED, V22, P677, DOI 10.1097/01.BPO.0000023143.69745.A9
  13. Dreher T, 2012, GAIT POSTURE, V36, P212, DOI 10.1016/j.gaitpost.2012.02.017
  14. Thawrani D, 2012, CLIN ORTHOP RELAT R, V470, P1303, DOI 10.1007/s11999-011-2215-1
  15. GAGE JR, 1987, DEV MED CHILD NEUROL, V29, P159
  16. Saw A, 2003, J PEDIATR ORTHOPED, V23, P672
  17. PERRY J, 1987, DEV MED CHILD NEUROL, V29, P153
  18. Dreher T, 2012, J BONE JOINT SURG AM, V94, pe142
  19. KADABA MP, 1990, J ORTHOPAED RES, V8, P383, DOI 10.1002/jor.1100080310
  20. SUTHERLAND DH, 1993, CLIN ORTHOP RELAT R, P139