Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates

Carregando...
Imagem de Miniatura
Citações na Scopus
43
Tipo de produção
article
Data de publicação
2016
Editora
ELIFE SCIENCES PUBLICATIONS LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
MALDANIS, Lara
CARVALHO, Murilo
ALMEIDA, Mariana Ramos
FREITAS, Francisco Idalecio
ANDRADE, Jose Artur Ferreira Gomes de
NUNES, Rafael Silva
POPPI, Ronei Jesus
FREITAE, Raul Oliveira
RODRIGUES, Fabio
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
ELIFE, v.5, article ID e14698, 12p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Elucidating cardiac evolution has been frustrated by lack of fossils. One celebrated enigma in cardiac evolution involves the transition from a cardiac outflow tract dominated by a multi-valved conus arteriosus in basal actinopterygians, to an outflow tract commanded by the non valved, elastic, bulbus arteriosus in higher actinopterygians. We demonstrate that cardiac preservation is possible in the extinct fish Rhacolepis buccalis from the Brazilian Cretaceous. Using X-ray synchrotron microtomography, we show that Rhacolepis fossils display hearts with a conus arteriosus containing at least five valve rows. This represents a transitional morphology between the primitive, multivalvar, conal condition and the derived, monovalvar, bulbar state of the outflow tract in modern actinopterygians. Our data rescue a long-lost cardiac phenotype (119-113 Ma) and suggest that outflow tract simplification in actinopterygians is compatible with a gradual, rather than a drastic saltation event. Overall, our results demonstrate the feasibility of studying cardiac evolution in fossils.
Palavras-chave
Referências
  1. AGASSIZ L., 1841, EDINBURGH NEW PHILOS, V30, P82
  2. Duran AC, 2008, J ANAT, V213, P597, DOI 10.1111/j.1469-7580.2008.00973.x
  3. Britz R, 2014, ICHTHYOL EXPLOR FRES, V24, P193
  4. Amores A, 1998, SCIENCE, V282, P1711, DOI 10.1126/science.282.5394.1711
  5. Schib JL, 2002, J ANAT, V201, P395, DOI 10.1046/j.0021-8782.2002.00110.x
  6. Icardo JM, 2002, ANAT REC, V267, P17, DOI 10.1002/ar.10080
  7. Long JA, 2008, NATURE, V453, P650, DOI 10.1038/nature06966
  8. Cleland TP, 2011, NATURWISSENSCHAFTEN, V98, P203, DOI 10.1007/s00114-010-0760-1
  9. MunozChapuli R, 1997, J THEOR BIOL, V185, P233, DOI 10.1006/jtbi.1996.0303
  10. Shu DG, 2003, NATURE, V421, P526, DOI 10.1038/nature01264
  11. Pradel A, 2009, P NATL ACAD SCI USA, V106, P5224, DOI 10.1073/pnas.0807047106
  12. Icardo JM, 2002, ANAT REC, V268, P388, DOI 10.1002/ar.10170
  13. Shapiro MD, 2004, NATURE, V428, P717, DOI 10.1038/nature02415
  14. JANVIER P, 1991, J ZOOL, V223, P567
  15. Grimes AC, 2006, DEV BIOL, V290, P265, DOI 10.1016/j.ydbio.2005.11.042
  16. Brito PM, 2010, PALAEONTOLOGY, V53, P1281, DOI 10.1111/j.1475-4983.2010.01015.x
  17. MARTILL DM, 1990, NATURE, V346, P171, DOI 10.1038/346171a0
  18. Young Gavin C., 2010, Palaeoworld, V19, P55, DOI 10.1016/j.palwor.2009.11.005
  19. Trinajstic K, 2007, BIOL LETT-UK, V3, P197, DOI 10.1098/rsbl.2006.0604
  20. Trinajstic K, 2013, SCIENCE, V341, P160, DOI 10.1126/science.1237275
  21. RUNYAN RB, 1983, DEV BIOL, V95, P108, DOI 10.1016/0012-1606(83)90010-6
  22. Fisher PE, 2000, SCIENCE, V288, P503, DOI 10.1126/science.288.5465.503
  23. Shubin N, 1997, NATURE, V388, P639, DOI 10.1038/41710
  24. Grimes AC, 2009, J FISH BIOL, V74, P983, DOI 10.1111/j.1095-8649.2008.02125.x
  25. McShea DW, 1996, EVOLUTION, V50, P477, DOI 10.2307/2410824
  26. Arratia G., 2008, VARASICHTHYIDS OTHER, P71
  27. Arratia G, 2010, REV BIOL MAR OCEANOG, V45, P635, DOI 10.4067/S0718-19572010000400009
  28. Betancur R R, 2013, PLOS CURRENTS TREE L, V5, P5, DOI 10.1371/CURRENTS.TOL.53BA26640DF0CCAEE75BB165C8C26288
  29. Boas JEV, 1901, LEHRBUCH ZOOLOGIE, P617
  30. Boas JEV, 1880, MORPH JB, V6, P527
  31. Broughton RE, 2013, PLOS CURRENTS TREE L, V5, DOI [10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e, DOI 10.1371/CURRENTS.TOL.2CA8041495FFAFD0C92756E75247483E]
  32. Brusca RC, 2003, INVERTEBRATES, p[xix, 936]
  33. Carvalho MRd, 1996, MESOZOIC FISHES SYST, P9
  34. Danforth CH, 1912, J MORPHOL, V23, P409, DOI 10.1002/jmor.1050230303
  35. Darwin C., 1858, J LINNEAN SOC ZOOLOG, V3, P45, DOI 10.1111/j.1096-3642.1858.tb02500.x
  36. de Moraes Rios-Netto A, 2012, REV BRASILEIRA GEOCI, V42, P331, DOI [10.5327/Z0375-75362012000200009, DOI 10.5327/Z0375-75362012000200009]
  37. Duran AC, 2014, ZOOLOGY, V117, P370, DOI 10.1016/j.zool.2014.05.003
  38. FARRELL AP, 1979, J EXP ZOOL, V209, P169, DOI 10.1002/jez.1402090120
  39. Forey PL, 1977, B BRIT MUSEUM, P123
  40. Gegenbaur C, 1866, JENAISCHE Z, V2, P365
  41. Janvier P, 1996, EARLY VERTEBRATES, P393
  42. Lwoff A, 1943, EVOLUTION PHYSL ETUD, P308
  43. Maisey J., 1991, SANTANA FOSSILS ILLU
  44. MAISEY JG, 1994, ENVIRON BIOL FISH, V40, P1, DOI 10.1007/BF00002179
  45. MARTILL DM, 1988, PALAEONTOLOGY, V31, P1
  46. Parsons CW, 1930, Q J MICROSC SCI, V73, P145
  47. Rowe T, 2001, SCIENCE, V291, p783a, DOI [10.1126/science.291.5505.783a, DOI 10.1126/SCIENCE.291.5505.783A]
  48. Satchell GH, 1967, J EXP BIOL, V46, P373
  49. Senior HD, 1907, ANAT REC, V1, P83
  50. Simoes-Costa MS, 2005, DEV BIOL, V277, P1, DOI [10.1016/j.ydbio.2004.09.026, DOI 10.1016/J.YDBIO.2004.09.026]
  51. Takeuchi M, 2009, COLD SPRING HARBOR P, V2009, DOI [10.1101/pdb.emo117, DOI 10.1101/PDB.EM0117]
  52. Taverne L, 1974, MEMORIES CLASSE SCI, V80, P1
  53. TAVERNE L, 1976, Biologisch Jaarboek, V44, P304
  54. Xavier-Neto J, 2010, HEART DEV REGENERATI, P3