Methods of measuring protein disulfide isomerase activity: a critical overview

Carregando...
Imagem de Miniatura
Citações na Scopus
28
Tipo de produção
article
Data de publicação
2014
Editora
FRONTIERS MEDIA SA
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
FRONTIERS IN CHEMISTRY, v.2, article ID 73, 6p, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.
Palavras-chave
protein disulfide isomerase, chaperone, thiols, reduction, isomerization, oxidation, redox signaling
Referências
  1. Smith AM, 2004, J BIOMOL SCREEN, V9, P614, DOI 10.1177/1087057104265292
  2. Montano SJ, 2014, ANAL BIOCHEM, V449, P139, DOI 10.1016/j.ab.2013.12.025
  3. Townsend DM, 2009, CANCER RES, V69, P7626, DOI 10.1158/0008-5472.CAN-09-0493
  4. Wu Y, 2012, BLOOD, V119, P1737, DOI 10.1182/blood-2011-06-360685
  5. Rancy PC, 2008, BIOCHEMISTRY-US, V47, P12047, DOI 10.1021/bi801604x
  6. Hoffstrom BG, 2010, NAT CHEM BIOL, V6, P900, DOI [10.1038/nchembio.467, 10.1038/NCHEMBIO.467]
  7. Xu SL, 2014, DRUG DISCOV TODAY, V19, P222, DOI 10.1016/j.drudis.2013.10.017
  8. Lu J, 2014, ANTIOXID REDOX SIGN, V21, P457, DOI 10.1089/ars.2014.5849
  9. Zito E, 2010, MOL CELL, V40, P787, DOI 10.1016/j.molcel.2010.11.010
  10. GOLDBERGER RF, 1964, J BIOL CHEM, V239, P1406
  11. HOLMGREN A, 1979, J BIOL CHEM, V254, P9627
  12. Raturi A, 2007, FREE RADICAL BIO MED, V43, P62, DOI 10.1016/j.freeradbiomed.2007.03.025
  13. Laurindo FRM, 2012, FREE RADICAL BIO MED, V52, P1954, DOI 10.1016/j.freeradbiomed.2012.02.037
  14. Muller C, 2013, ANTIOXID REDOX SIGN, V18, P731, DOI 10.1089/ars.2012.4577
  15. El Hindy M, 2014, ANTIOXID REDOX SIGN, V20, P2497, DOI 10.1089/ars.2012.4869
  16. Langer F, 2013, BLOOD, V121, P2324, DOI 10.1182/blood-2012-10-460493
  17. Lee S, 2014, EMBO MOL MED, V6, P732, DOI 10.15252/emmm.201302561
  18. Zhou HX, 2013, FEBS LETT, V587, P1053, DOI 10.1016/j.febslet.2013.01.064
  19. Mares RE, 2011, INT J MOL SCI, V12, P4625, DOI 10.3390/ijms12074625
  20. LYLES MM, 1991, BIOCHEMISTRY-US, V30, P613, DOI 10.1021/bi00217a004
  21. Jasuja R, 2012, J CLIN INVEST, V122, P2104, DOI 10.1172/JCI61228
  22. Jessop CE, 2007, EMBO J, V26, P28, DOI 10.1038/sj.emboj.7601505
  23. Karala AR, 2010, FEBS J, V277, P2454, DOI 10.1111/j.1742-4658.2010.07660.x
  24. Paes AMD, 2011, J LEUKOCYTE BIOL, V90, P799, DOI 10.1189/jlb.0610324
  25. Xu SL, 2012, P NATL ACAD SCI USA, V109, P16348, DOI 10.1073/pnas.1205226109
  26. Hatahet F, 2009, ANTIOXID REDOX SIGN, V11, P2807, DOI 10.1089/ARS.2009.2466
  27. Khan MMG, 2011, ACS CHEM BIOL, V6, P245, DOI 10.1021/cb100387r
  28. HILLSON DA, 1984, METHOD ENZYMOL, V107, P281
  29. Janiszewski M, 2005, J BIOL CHEM, V280, P40813, DOI 10.1074/jbc.M509255200
  30. MORJANA NA, 1991, BIOCHEMISTRY-US, V30, P4985, DOI 10.1021/bi00234a021
  31. Kersteen EA, 2005, BIOCHEMISTRY-US, V44, P12168, DOI 10.1021/bi0507985
  32. CAI H, 1994, J BIOL CHEM, V269, P24550
  33. Christiansen C, 2004, ANAL BIOCHEM, V333, P148, DOI 10.1016/j.ab.2004.06.027
  34. Gallina A, 2002, J BIOL CHEM, V277, P50579, DOI 10.1074/jbc.M204547200
  35. Banerjee R, 2013, J AM CHEM SOC, V135, P2497, DOI 10.1021/ja400427e
  36. Reinhardt C, 2008, J CLIN INVEST, V118, P1110, DOI 10.1172/JCI32376
  37. Klappa P, 1998, EMBO J, V17, P927, DOI 10.1093/emboj/17.4.927
  38. RUOPPOLO M, 1995, BIOCHEMISTRY-US, V34, P9380, DOI 10.1021/bi00029a014
  39. Irvine AG, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0082511
  40. Prado GN, 2013, FASEB J, V27, P4619, DOI 10.1096/fj.13-228577
  41. Ruoppolo M, 1996, BIOCHEMISTRY-US, V35, P13636, DOI 10.1021/bi960755b
  42. van den Berg Bert, 1999, EMBO (European Molecular Biology Organization) Journal, V18, P4794, DOI 10.1093/emboj/18.17.4794
  43. Wang C, 2013, ANTIOXID REDOX SIGN, V19, P44, DOI 10.1089/ars.2012.4630