Protein Quality Control Disruption by PKC beta II in Heart Failure; Rescue by the Selective PKC beta II Inhibitor, beta IIV5-3

Carregando...
Imagem de Miniatura
Citações na Scopus
41
Tipo de produção
article
Data de publicação
2012
Editora
PUBLIC LIBRARY SCIENCE
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
FERREIRA, Julio C. B.
BRUM, Patricia Chakur
MOCHLY-ROSEN, Daria
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PLOS ONE, v.7, n.3, article ID e33175, 11p, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Myocardial remodeling and heart failure (HF) are common sequelae of many forms of cardiovascular disease and a leading cause of mortality worldwide. Accumulation of damaged cardiac proteins in heart failure has been described. However, how protein quality control (PQC) is regulated and its contribution to HF development are not known. Here, we describe a novel role for activated protein kinase C isoform beta II (PKC beta II) in disrupting PQC. We show that active PKC beta II directly phosphorylated the proteasome and inhibited proteasomal activity in vitro and in cultured neonatal cardiomyocytes. Importantly, inhibition of PKC beta II, using a selective PKC beta II peptide inhibitor (beta IIV5-3), improved proteasomal activity and conferred protection in cultured neonatal cardiomyocytes. We also show that sustained inhibition of PKC beta II increased proteasomal activity, decreased accumulation of damaged and misfolded proteins and increased animal survival in two rat models of HF. Interestingly, beta IIV5-3-mediated protection was blunted by sustained proteasomal inhibition in HF. Finally, increased cardiac PKC beta II activity and accumulation of misfolded proteins associated with decreased proteasomal function were found also in remodeled and failing human hearts, indicating a potential clinical relevance of our findings. Together, our data highlights PKC beta II as a novel inhibitor of proteasomal function. PQC disruption by increased PKC beta II activity in vivo appears to contribute to the pathophysiology of heart failure, suggesting that PKC beta II inhibition may benefit patients with heart failure. (218 words)
Palavras-chave
Referências
  1. Antony JM, 2004, NAT NEUROSCI, V7, P1088, DOI 10.1038/nn1319
  2. Asai M, 2009, J MOL CELL CARDIOL, V46, P452, DOI 10.1016/j.yjmcc.2008.11.001
  3. Bence NF, 2001, SCIENCE, V292, P1552, DOI 10.1126/science.292.5521.1552
  4. Bowling N, 1999, CIRCULATION, V99, P384
  5. Bowman JC, 1997, J CLIN INVEST, V100, P2189, DOI 10.1172/JCI119755
  6. Bulteau AL, 2002, ARCH BIOCHEM BIOPHYS, V397, P298, DOI 10.1006/abbi.2001.2663
  7. Chen QH, 2005, CIRC RES, V97, P1018, DOI 10.1161/01.RES.0000189262.92896.0b
  8. Churchill EN, 2010, CARDIOVASC RES, V85, P385, DOI 10.1093/cvr/cvp334
  9. Disatnik MH, 2002, J CELL SCI, V115, P2151
  10. Farout L, 2006, ARCH BIOCHEM BIOPHYS, V453, P135, DOI 10.1016/j.abb.2006.02.003
  11. Ferreira JCB, 2011, LIFE SCI, V88, P578, DOI 10.1016/j.lfs.2011.01.009
  12. Ferreira JCB, 2011, J MOL CELL CARDIOL, V51, P479, DOI 10.1016/j.yjmcc.2010.10.020
  13. Ferreira JCB, 2011, J MOL CELL CARDIOL, V51, P980, DOI 10.1016/j.yjmcc.2011.08.025
  14. Fu HY, 2008, CARDIOVASC RES, V79, P600, DOI 10.1093/cvr/cvn128
  15. Gomes AV, 2009, MOL CELL PROTEOMICS, V8, P302, DOI 10.1074/mcp.M800058-MCP200
  16. Gray MO, 1997, J BIOL CHEM, V272, P30945, DOI 10.1074/jbc.272.49.30945
  17. Hedhli N, 2008, AM J PHYSIOL-HEART C, V295, pH1385, DOI 10.1152/ajpheart.00532.2008
  18. Hemeryck A, 2007, CANCER CHEMOTH PHARM, V60, P777, DOI 10.1007/s00280-007-0424-9
  19. Inagaki K, 2003, CIRCULATION, V108, P2304, DOI 10.1161/01.CIR.0000101682.24138.36
  20. Inagaki K, 2002, J MOL CELL CARDIOL, V34, P1377, DOI 10.1006/jmcc.2002.2089
  21. Iwanaga Y, 1998, CIRCULATION, V98, P2065
  22. JOHNS TNP, 1954, ANN SURG, V140, P675, DOI 10.1097/00000658-195411000-00006
  23. JOHNSON JA, 1995, CIRC RES, V76, P654
  24. Kim JW, 2008, CANCER RES, V68, P6831, DOI 10.1158/0008-5472.CAN-07-6195
  25. Liu JB, 2006, FASEB J, V20, P362, DOI 10.1096/fj.05-4869fje
  26. Lu HJ, 2008, MOL CELL PROTEOMICS, V7, P2073, DOI 10.1074/mcp.M800064-MCP200
  27. Mearini G, 2008, BBA-MOL BASIS DIS, V1782, P749, DOI 10.1016/j.bbadis.2008.06.009
  28. Meiners S, 2008, HYPERTENSION, V51, P302, DOI 10.1161/HYPERTENSIONAHA.107.097816
  29. Nowis D, 2010, AM J PATHOL, V176, P2658, DOI 10.2353/ajpath.2010.090690
  30. Orciuolo E, 2007, BRIT J HAEMATOL, V138, P396, DOI 10.1111/j.1365-2141.2007.06659.x
  31. Palaniyandi SS, 2009, CARDIOVASC RES, V82, P229, DOI 10.1093/cvr/cvp001
  32. Palaniyandi SS, 2011, J CELL MOL MED, V15, P1769, DOI 10.1111/j.1582-4934.2010.01174.x
  33. Patterson C, 2007, CIRCULATION, V115, P1456, DOI 10.1161/CIRCULATIONAHA.106.649863
  34. Paulus WJ, 2010, J AM COLL CARDIOL, V55, P526, DOI 10.1016/j.jacc.2009.06.067
  35. Simonis G, 2007, MOL CELL BIOCHEM, V305, P103, DOI 10.1007/s11010-007-9533-3
  36. Sohn D, 2006, CELL CYCLE, V5, P841, DOI 10.4161/cc.5.8.2740
  37. Souroujon MC, 1998, NAT BIOTECHNOL, V16, P919, DOI 10.1038/nbt1098-919
  38. Stebbins EG, 2001, J BIOL CHEM, V276, P29644, DOI 10.1074/jbc.M101044200
  39. Su HB, 2010, CARDIOVASC RES, V85, P253, DOI 10.1093/cvr/cvp287
  40. Vallentin A, 2007, J BIOL CHEM, V282, P1650, DOI 10.1074/jbc.M601710200
  41. Wakasaki H, 1997, P NATL ACAD SCI USA, V94, P9320, DOI 10.1073/pnas.94.17.9320
  42. Wang XJ, 2006, CIRC RES, V99, P1315, DOI 10.1161/01.RES.0000252342.61447.a2
  43. Weekes J, 1999, ELECTROPHORESIS, V20, P898, DOI 10.1002/(SICI)1522-2683(19990101)20:4/5<898::AID-ELPS898>3.0.CO;2-B
  44. Weekes J, 2003, PROTEOMICS, V3, P208, DOI 10.1002/pmic.200390029
  45. Willis MS, 2009, CARDIOVASC RES, V81, P439, DOI 10.1093/cvr/cvn289
  46. Zong C, 2006, CIRC RES, V99, P372, DOI 10.1161/01.RES.0000237389.40000.02