A Window on the Study of Aversive Instrumental Learning: Strains, Performance, Neuroendocrine, and Immunologic Systems

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2016
Editora
FRONTIERS MEDIA SA
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
OLIVEIRA, Caroline C. de
GOUVEIA, Flavia V.
CASTRO, Marina C. de
KUROKI, Mayra A.
SANTOS, Lennon C. T. dos
MARTINEZ, Raquel C. R.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
FRONTIERS IN BEHAVIORAL NEUROSCIENCE, v.10, article ID 162, 11p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The avoidance response is present in pathological anxiety and interferes with normal daily functions. The aim of this article is to shed light on performance markers of active avoidance (AA) using two different rat strains, Sprague-Dawley (SD) and Wistar. Specifically, good and poor performers were evaluated regarding anxiety traits exhibited in the elevated plus maze (EPM) and corticosterone levels and motor activity in the open field test. In addition, the plasma levels of Interleukin-6 (IL-6), Interleukin-1 Beta (IL-1 beta), Nerve Growth Factor Beta (NGF-beta), Tumor Necrosis Factor-Alpha (TNF-alpha) and cytokine-induced neutrophil chemoattractant 1 (CINC-1) were compared in the good and poor performers to better understand the role of the immunologic system in aversive learning. Behavioral criteria were employed to identify subpopulations of SD and Wistar rats based on their behavioral scores during a two-way AA test. The animals were tested for anxiety-like behavior in the EPM and motor activity in the open-field test. Plasma corticosterone levels were measured at the end of the avoidance test. Cytokine levels of IL-6, IL-1 beta, NGF-beta, TNF-alpha, and CINC-1 were measured in the plasma of the Wistar rats. Sixty-six percent of the Wistar rats and 35% of the SD rats exhibited a poor performance. This feature was associated with a decrease in anxiety-like behavior in the EPM. The poor and good performers exhibited lower levels of corticosterone compared with the control animals, which suggests that training alters corticosterone levels, thereby leading to hypocortisolism, independent of the performance. The CINC-1 levels were increased in the poor performers, which reinforces the role of immunologic system activation in learning deficits. Our study provides a better understanding of the complex interactions that underlie neuroimmune consequences and their implications for performance.
Palavras-chave
avoidance, aversive instrumental learning, corticosterone, anxiety, elevated plus-maze, immunologic system
Referências
  1. Adzovic L, 2015, J NEUROINFLAMM, V12, DOI 10.1186/s12974-015-0282-z
  2. Akieda-Asai S, 2011, EXP ANIM TOKYO, V60, P509
  3. American Psychiatric Association, 2013, DIAGN STAT MAN MENT
  4. Avcu P, 2014, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00334
  5. Ballendine SA, 2015, PROG NEURO-PSYCHOPH, V57, P155, DOI 10.1016/j.pnpbp.2014.11.002
  6. Barichello T, 2010, J NEUROIMMUNOL, V221, P42, DOI 10.1016/j.jneuroim.2010.02.009
  7. Barichello T, 2013, TRANSL RES, V162, P390, DOI 10.1016/j.trsl.2013.08.001
  8. Barichello T, 2012, EUR J PHARMACOL, V697, P158, DOI 10.1016/j.ejphar.2012.09.053
  9. Baum A., 1997, MEASURING STRESS GUI, P175
  10. Baum AE, 2006, BEHAV BRAIN RES, V169, P220, DOI 10.1016/j.bbr.2006.01.007
  11. Beck KD, 2010, PROG NEURO-PSYCHOPH, V34, P852, DOI 10.1016/j.pnpbp.2010.03.036
  12. BERGER DF, 1988, J COMP PSYCHOL, V102, P279, DOI 10.1037/0735-7036.102.3.279
  13. BERGER DF, 1981, PHYSIOL PSYCHOL, V9, P81
  14. Biscaro B, 2012, NEURODEGENER DIS, V9, P187, DOI 10.1159/000330363
  15. Blandino P, 2009, BRAIN BEHAV IMMUN, V23, P958, DOI 10.1016/j.bbi.2009.04.013
  16. BOURNE PG, 1968, ARCH GEN PSYCHIAT, V19, P135
  17. Boyer P, 2000, ACTA PSYCHIAT SCAND, V102, P24, DOI 10.1111/j.0065-1591.2000.acp29[dash]04.x
  18. Brochu ME, 2011, J NEUROINFLAMM, V8, DOI 10.1186/1742-2094-8-55
  19. Brunssen SH, 2013, BRAIN BEHAV IMMUN, V27, P42, DOI 10.1016/j.bbi.2012.08.017
  20. Brush FR, 2003, BEHAV GENET, V33, P677, DOI 10.1023/A:1026135231594
  21. BRUSH FR, 1979, BEHAV GENET, V9, P309, DOI 10.1007/BF01068209
  22. Brush F. R., 1996, PSYCHON SCI, V5, P123, DOI [10.3758/BF03328312, DOI 10.3758/BF03328312]
  23. Burton MD, 2011, J NEUROINFLAMM, V8, DOI 10.1186/1742-2094-8-54
  24. Cabib S, 1996, NEUROSCIENCE, V73, P375, DOI 10.1016/0306-4522(96)00750-6
  25. Camilo LM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110817
  26. CAPLAN RD, 1979, J PSYCHOSOM RES, V23, P181, DOI 10.1016/0022-3999(79)90003-5
  27. Capuron L, 2011, PHARMACOL THERAPEUT, V130, P226, DOI 10.1016/j.pharmthera.2011.01.014
  28. Choi JG, 2011, BEHAV BRAIN RES, V216, P652, DOI 10.1016/j.bbr.2010.09.008
  29. Choi JS, 2010, LEARN MEMORY, V17, P139, DOI 10.1101/lm.1676610
  30. Choi Y, 2007, NEUROPSYCHOPHARMACOL, V32, P2393, DOI 10.1038/sj.npp.1301377
  31. Cibelli M, 2010, ANN NEUROL, V68, P360, DOI 10.1002/ana.22082
  32. COOVER GD, 1973, J COMP PHYSIOL PSYCH, V82, P170, DOI 10.1037/h0033790
  33. CROFFORD LJ, 1994, ARTHRITIS RHEUM-US, V37, P1583, DOI 10.1002/art.1780371105
  34. CRUZ APM, 1994, PHARMACOL BIOCHEM BE, V49, P171, DOI 10.1016/0091-3057(94)90472-3
  35. Datta SC, 2008, J NEUROSCI METH, V175, P119, DOI 10.1016/j.jneumeth.2008.08.007
  36. Deak T, 2015, STRESS, V18, P367, DOI 10.3109/10253890.2015.1053451
  37. DEMITRACK MA, 1991, J CLIN ENDOCR METAB, V73, P1224
  38. Donzis EJ, 2014, NEUROBIOL LEARN MEM, V115, P68, DOI 10.1016/j.nlm.2014.08.008
  39. DUNN AJ, 1990, BRAIN RES REV, V15, P71, DOI 10.1016/0165-0173(90)90012-D
  40. Elderkin-Thompson V, 2012, AM J GERIAT PSYCHIAT, V20, P753, DOI 10.1097/JGP.0b013e31825d08d6
  41. Elenkov IJ, 2002, ANN NY ACAD SCI, V966, P290
  42. Fairbanks J., 1996, BIOL PSYCHIAT, V39, DOI 10.1016/0006-3223(96)84031-5
  43. Farr SA, 2014, J ALZHEIMERS DIS, V40, P1005, DOI 10.3233/JAD-131883
  44. Ferguson SA, 2004, PHARMACOL BIOCHEM BE, V77, P583, DOI 10.1016/j.pbb.2003.12.014
  45. Fiore M, 2000, BEHAV BRAIN RES, V112, P165, DOI 10.1016/S0166-4328(00)00180-7
  46. Fukui H, 2015, J OCCUP HEALTH, V57, P118, DOI 10.1539/joh.14-0161-OA
  47. Gadek-Michalska A, 2013, PHARMACOL REP, V65, P1655
  48. Galatzer-Levy Isaac R, 2014, Front Syst Neurosci, V8, P179, DOI 10.3389/fnsys.2014.00179
  49. Ganella DE, 2014, BRIT J PHARMACOL, V171, P4556, DOI 10.1111/bph.12643
  50. Garcia AMB, 2005, PHYSIOL BEHAV, V85, P440, DOI 10.1016/j.physbeh.2005.04.027
  51. GOLD PE, 1975, BEHAV BIOL, V13, P145, DOI 10.1016/S0091-6773(75)91784-8
  52. Gold PW, 1999, P ASSOC AM PHYSICIAN, V111, P22, DOI 10.1046/j.1525-1381.1999.09423.x
  53. Gourley SL, 2009, NEUROPSYCHOPHARMACOL, V34, P707, DOI 10.1038/npp.2008.123
  54. Habbas S, 2015, CELL, V163, P1730, DOI 10.1016/j.cell.2015.11.023
  55. Heim C, 2000, PSYCHONEUROENDOCRINO, V25, P1, DOI 10.1016/S0306-4530(99)00035-9
  56. HELLHAMMER DH, 1993, PSYCHOTHER PSYCHOSOM, V60, P8
  57. Hodes GE, 2014, P NATL ACAD SCI USA, V111, P16136, DOI 10.1073/pnas.1415191111
  58. Horii Y, 2012, EXP ANIM TOKYO, V61, P517
  59. Hueston CM, 2014, PHYSIOL BEHAV, V124, P77, DOI 10.1016/j.physbeh.2013.10.035
  60. Jiao XL, 2011, BEHAV BRAIN RES, V221, P98, DOI 10.1016/j.bbr.2011.02.029
  61. Jiao XL, 2015, FRONT BEHAV NEUROSCI, V9, DOI 10.3389/fnbeh.2015.00249
  62. Jing H, 2015, NEUROSCI RES, V91, P34, DOI 10.1016/j.neures.2014.10.015
  63. KANT GJ, 1992, PHYSIOL BEHAV, V51, P1285, DOI 10.1016/0031-9384(92)90323-T
  64. Keeley RJ, 2015, BEHAV BRAIN RES, V288, P118, DOI 10.1016/j.bbr.2014.10.039
  65. Kim HG, 2013, BRIT J NUTR, V110, P86, DOI 10.1017/S0007114512004710
  66. King Shirley L, 2002, Biol Res Nurs, V4, P92, DOI 10.1177/1099800402238334
  67. Kohman RA, 2013, BEHAV BRAIN RES, V242, P17, DOI 10.1016/j.bbr.2012.12.032
  68. Lazaro-Munoz G, 2010, BIOL PSYCHIAT, V67, P1120, DOI 10.1016/j.biopsych.2009.12.002
  69. LeDoux JE, 2012, PROG BRAIN RES, V195, P431, DOI 10.1016/B978-0-444-53860-4.00021-0
  70. Lightman SL, 2008, J NEUROENDOCRINOL, V20, P880, DOI 10.1111/j.1365-2826.2008.01711.x
  71. Lim S, 2014, J NUTR BIOCHEM, V25, P1058, DOI 10.1016/j.jnutbio.2014.05.009
  72. Liu ZY, 2007, STROKE, V38, P146, DOI 10.1161/01.STR.0000251791.64910.cd
  73. Martinez RCR, 2013, LEARN MEMORY, V20, P446, DOI 10.1101/lm.031047.113
  74. MASON JW, 1968, PSYCHOSOM MED, V30, P608
  75. McAuley JD, 2009, BEHAV BRAIN RES, V204, P162, DOI 10.1016/j.bbr.2009.05.036
  76. McCue MG, 2014, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00329
  77. Michalak S, 2010, FOLIA NEUROPATHOL, V48, P93
  78. Mineka S, 2006, AM PSYCHOL, V61, P10, DOI 10.1037/0003-066X.61.1.10
  79. Moscarello JM, 2013, J NEUROSCI, V33, P3815, DOI 10.1523/JNEUROSCI.2596-12.2013
  80. Nolasco EL, 2015, CELL PHYSIOL BIOCHEM, V36, P1467, DOI 10.1159/000430311
  81. Ohta R, 1999, BEHAV GENET, V29, P137, DOI 10.1023/A:1021616723969
  82. Overstreet DH, 2012, METHODS MOL BIOL, V829, P125, DOI 10.1007/978-1-61779-458-2_7
  83. PARE WP, 1993, J PHYSIOLOGY-PARIS, V87, P229, DOI 10.1016/0928-4257(93)90010-Q
  84. Perrotti LI, 2013, BRAIN RES BULL, V98, P102, DOI 10.1016/j.brainresbull.2013.07.004
  85. Pugh CR, 1998, BRAIN BEHAV IMMUN, V12, P212, DOI 10.1006/brbi.1998.0524
  86. Quinteiro MS, 2014, EUR J PHARMACOL, V740, P58, DOI 10.1016/j.ejphar.2014.07.002
  87. Ramos A, 1997, BEHAV BRAIN RES, V85, P57, DOI 10.1016/S0166-4328(96)00164-7
  88. RAVARIS CL, 1991, J CLIN PSYCHOPHARM, V11, P344
  89. REDEI E, 1994, AM J PHYSIOL, V266, pR353
  90. Redolat Rosa, 2009, Curr Drug Abuse Rev, V2, P230
  91. Ren WJ, 2011, NEUROPSYCHOPHARMACOL, V36, P979, DOI 10.1038/npp.2010.236
  92. Reznikov R, 2015, J PSYCHIATR RES, V61, P158, DOI 10.1016/j.jpsychires.2014.12.017
  93. Servatius RJ, 2008, BEHAV BRAIN RES, V192, P191, DOI 10.1016/j.bbr.2008.04.006
  94. Sheynin J, 2014, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00323
  95. Shibata F, 2002, YAKUGAKU ZASSHI, V122, P263, DOI 10.1248/yakushi.122.263
  96. SIDMAN M, 1953, SCIENCE, V118, P157, DOI 10.1126/science.118.3058.157
  97. Silva B, 2015, ARQ NEURO-PSIQUIAT, V73, P655, DOI 10.1590/0004-282X20150083
  98. Spiga F, 2015, J ENDOCRINOL, V226, pT55, DOI 10.1530/JOE-15-0132
  99. Steimer T, 2003, STRESS, V6, P87, DOI 10.1080/1025389031000111320
  100. Sternberg EM, 2001, J ENDOCRINOL, V169, P429, DOI 10.1677/joe.0.1690429
  101. Sunahara KKS, 2014, CELL PHYSIOL BIOCHEM, V34, P2017, DOI 10.1159/000366397
  102. Teixeira JM, 2014, NEUROSCIENCE, V277, P163, DOI 10.1016/j.neuroscience.2014.06.057
  103. Vora P, 2012, EXP NEUROL, V236, P259, DOI 10.1016/j.expneurol.2012.04.012
  104. WALSH RN, 1976, PSYCHOL BULL, V83, P482, DOI 10.1037//0033-2909.83.3.482
  105. Wiersma A, 1998, PSYCHONEUROENDOCRINO, V23, P261, DOI 10.1016/S0306-4530(97)00098-X
  106. Wilensky AE, 2000, J NEUROSCI, V20, P7059
  107. Witko-Sarsat V, 2000, LAB INVEST, V80, P617
  108. Wolf OT, 2003, BEST PRACT RES CL EN, V17, P287, DOI 10.1016/S1521-690X(02)00101-X
  109. Xu YY, 2015, NEUROPEPTIDES, V54, P47, DOI 10.1016/j.npep.2015.08.003
  110. YEHUDA R, 1990, J NERV MENT DIS, V178, P366, DOI 10.1097/00005053-199006000-00004
  111. Yehuda R, 1997, ANN NY ACAD SCI, V821, P57, DOI 10.1111/j.1749-6632.1997.tb48269.x
  112. Yehuda R, 2007, NEURON, V56, P19, DOI 10.1016/j.neuron.2007.09.006
  113. Zheng P, 2008, CURR NEUROVASC RES, V5, P13