The deficiency of galectin-3 in stromal cells leads to enhanced tumor growth and bone marrow metastasis

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2016
Editora
BIOMED CENTRAL LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
PEREIRA, Jonathas Xavier
AZEREDO, Maria Carolina Braga
MARTINS, Felipe Sa
OLIVEIRA, Felipe Leite
SANTOS, Sofia Nascimento
BERNARDES, Emerson Soares
EL-CHEIKH, Marcia Cury
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BMC CANCER, v.16, article ID 636, 9p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Galectin-3 is a multifunctional beta-galactoside-binding lectin that once synthesized, is expressed in the nucleus, cytoplasm, cell surface and in the extracellular environment. Because of its unique structure, galectin-3 can oligomerize forming lattice upon binding to multivalent oligossacharides and influence several pathologic events such as tumorigenesis, invasion and metastasis. Methods: In our study, balb/c Lgals3+/+ and Lgals3-/- female mice were inoculated in the fourth mammary fat pad with 4T1 breast cancer cell line. The primary tumor, inguinal lymph nodes and iliac bone marrow were evaluated 15, 21 and 28 days post-injection. The primary tumor growth was evaluated by measuring the external diameter, internal growth by ultrasound and weight of the excised tumor. The presence of cancer cells in the draining lymph nodes and iliac crest bone marrow were performed by immunohistochemistry, PCR and clonogenic metastatic assay. Results: In this study we demonstrated that the deletion of galectin-3 in the host affected drastically the in vivo growth rate of 4T1 tumors. The primary tumors in Lgals3-/- mice displayed a higher proliferative rate (p < 0,05), an increased necrotic area (p < 0,01) and new blood vessels with a wider lumen in comparison with tumors from Lgals3+/+ mice (P < 0,05). Moreover, we detected a higher number of 4T1-derived metastatic colonies in the lymph nodes and the bone marrow of Lgals3-/- mice (p < 0,05). Additionally, healthy Lgals3-/- control mice presented an altered spatial distribution of CXCL12 in the bone marrow, which may explain at least in part the initial colonization of this organ in Lgals3-/- injected with 4T1 cells. Conclusions: Taken together, our results demonstrate for the first time that the absence of galectin-3 in the host microenvironment favors the growth of the primary tumors, the metastatic spread to the inguinal lymph nodes and bone marrow colonization by metastatic 4T1 tumor cells.
Palavras-chave
4T1 breast carcinoma, Galectin-3, Bone marrow metastasis, CXCR4/CXCL12 axis
Referências
  1. Aziz MTA, 2008, MED SCI MONITOR, V14, pBR249
  2. Bernardes ES, 2006, AM J PATHOL, V168, P1910, DOI 10.2353/ajpath.2006.050636
  3. Birdsall B, 2001, BIOCHEMISTRY-US, V40, P4859, DOI 10.1021/bi002907f
  4. Brand C, 2011, CELL TISSUE RES, V346, P427, DOI 10.1007/s00441-011-1276-5
  5. Chaudhari AD, 2015, MOL IMMUNOL, V68, P300, DOI 10.1016/j.molimm.2015.09.015
  6. Colnot C, 2001, DEV BIOL, V229, P203, DOI 10.1006/dbio.2000.9933
  7. Colnot C, 1998, IMMUNOLOGY, V94, P290, DOI 10.1046/j.1365-2567.1998.00517.x
  8. Colnot C, 1998, DEV DYNAM, V211, P306, DOI 10.1002/(SICI)1097-0177(199804)211:4<306::AID-AJA2>3.0.CO;2-L
  9. Devine SM, 2008, BLOOD, V112, P990, DOI 10.1182/blood-2007-12-130179
  10. Dumic J, 2006, BBA-GEN SUBJECTS, V1760, P616, DOI 10.1016/j.bbagen.2005.12.020
  11. Fortuna-Costa Anneliese, 2014, Front Oncol, V4, P138, DOI 10.3389/fonc.2014.00138
  12. Grassinger J, 2010, BLOOD, V116, P3185, DOI 10.1182/blood-2009-12-260703
  13. Hsu DK, 2000, AM J PATHOL, V156, P1073, DOI 10.1016/S0002-9440(10)64975-9
  14. Iurisci I, 2000, CLIN CANCER RES, V6, P1389
  15. Jia WZ, 2013, AM J PATHOL, V182, P1821, DOI 10.1016/j.ajpath.2013.01.017
  16. Kim HRC, 1999, CANCER RES, V59, P4148
  17. LeMarer N, 1996, J CELL PHYSIOL, V168, P51, DOI 10.1002/(SICI)1097-4652(199607)168:1<51::AID-JCP7>3.0.CO;2-7
  18. Liu FT, 2005, NAT REV CANCER, V5, P29, DOI 10.1038/nrc1527
  19. Machado CML, 2014, CANCER MED-US, V3, P201, DOI 10.1002/cam4.173
  20. Meads MB, 2008, CLIN CANCER RES, V14, P2519, DOI 10.1158/1078-0432.CCR-07-2223
  21. Mensah-Brown EPK, 2009, CLIN IMMUNOL, V130, P83, DOI 10.1016/j.clim.2008.08.024
  22. Monteiro AC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068171
  23. More SK, 2015, BIOCHEM BIOPH RES CO, V460, P302, DOI 10.1016/j.bbrc.2015.03.030
  24. Nangia-Makker P, 2000, AM J PATHOL, V156, P899, DOI 10.1016/S0002-9440(10)64959-0
  25. Nangia-Makker Pratima, 2008, Cancer Microenviron, V1, P43, DOI 10.1007/s12307-008-0003-6
  26. Newlaczyl AU, 2011, CANCER LETT, V313, P123, DOI 10.1016/j.canlet.2011.09.003
  27. Oliveira FL, 2007, J LEUKOCYTE BIOL, V82, P300, DOI 10.1189/jlb.1206747
  28. Perillo NL, 1998, J MOL MED, V76, P402, DOI 10.1007/s001090050232
  29. Pulaski BA, 2000, CANCER IMMUNOL IMMUN, V49, P34, DOI 10.1007/s002620050024
  30. Radosavljevic G, 2011, CLIN EXP METASTAS, V28, P451, DOI 10.1007/s10585-011-9383-y
  31. Sano H, 2000, J IMMUNOL, V165, P2156
  32. Sato S, 2002, J IMMUNOL, V168, P1813
  33. Sun Y, 2014, WORLD J SURG ONCOL, V12, DOI 10.1186/1477-7819-12-310
  34. Suzuki Y, 2008, JACC-CARDIOVASC INTE, V1, P168, DOI 10.1016/j.jcin.2007.12.007
  35. Thijssen VLJL, 2007, CURR PHARM DESIGN, V13, P3576, DOI 10.2174/138161207782794121
  36. Volarevic V, 2010, J BUON, V15, P768
  37. Yu LG, 2007, J BIOL CHEM, V282, P773, DOI 10.1074/jbc.M606862200
  38. Zhao QC, 2010, MOL CANCER, V9, DOI 10.1186/1476-4598-9-154
  39. Zhao QC, 2009, CANCER RES, V69, P6799, DOI 10.1158/0008-5472.CAN-09-1096