Inducible nitric oxide synthase inhibition increases MMP-2 activity leading to imbalance between extracellular matrix deposition and degradation after polypropylene mesh implant

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY-BLACKWELL
Autores
Citação
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, v.101A, n.5, p.1379-1387, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Prosthetic mesh implants are commonly used to correct abdominal wall defects. However, success of the procedure is conditioned by an adequate inflammatory response to the device. We hypothesized that nitric oxide produced by nitric oxide synthase 2 (NOS2) and MMP-2 and -9 participate in response induced by mesh implants in the abdominal wall and, consequently, affect the outcome of the surgical procedure. In the first step, temporal inflammatory markers profile was evaluated. Polypropylene meshes were implanted in the peritoneal side of the abdominal wall of C57Black mice. After 2, 4, 7, 15, and 30 days, tissues around the mesh implant were collected and inflammatory markers were analyzed. In the second step, NOS2 activity was inhibited with nitro-L-arginine methyl ester (L-NAME). Samples were collected after 15 days (when inflammation was reduced), and the inflammatory and tissue remodeling markers were investigated. Polypropylene mesh implant induced a pro-inflammatory environment mediated by intense MMP-2 and -9 activities, NO release, and interleukin-1 production peaking in 7 days and gradually decreasing after 15 days. NOS2 inhibition increased MMP-2 activity and resulted in a higher visceral adhesion incidence at the mesh implantation site when compared with non-treated animals that underwent the same procedure. We conclude that NOS2-derived NO is crucial for adequate response to polypropylene mesh implant integration in the peritoneum. NO deficiency results in an imbalance between extracellular matrix deposition/degradation contributing to visceral adhesions incidence. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
Palavras-chave
polypropylene mesh, inflammation, inducible nitric oxide synthase, nitric oxide, matrix metalloproteinases
Referências
  1. Anderson JM., 2001, ANN REV MATER RES, V31, P11
  2. Anderson JM, 2008, SEMIN IMMUNOL, V20, P86, DOI 10.1016/j.smim.2007.11.004
  3. Bosca L, 2005, TOXICOLOGY, V208, P249, DOI 10.1016/j.tox.2004.11.035
  4. Bozza FA, 2007, CRIT CARE, V11, DOI 10.1186/cc5783
  5. Chen Y, 2008, ARTECH HSE BIOINF BI, P33
  6. Engelsman AF, 2009, ACTA BIOMATER, V5, P1905, DOI 10.1016/j.actbio.2009.01.041
  7. Eu JP, 2000, BIOCHEMISTRY-US, V39, P1040, DOI 10.1021/bi992046e
  8. Filippin LI, 2009, NITRIC OXIDE-BIOL CH, V21, P157, DOI 10.1016/j.niox.2009.08.002
  9. Forbes SS, 2009, BRIT J SURG, V96, P851, DOI 10.1002/bjs.6668
  10. Godoy LC, 2010, SHOCK, V33, P626, DOI 10.1097/SHK.0b013e3181cb88e6
  11. Goldenberg Alberto, 2005, Acta Cir Bras, V20, P347, DOI 10.1590/S0102-86502005000500002
  12. Gu ZZ, 2002, SCIENCE, V297, P1186, DOI 10.1126/science.1073634
  13. Hinkle CL, 2003, BIOCHEMISTRY-US, V42, P2127, DOI 10.1021/bi026709v
  14. Hsu YC, 2006, NITRIC OXIDE-BIOL CH, V14, P327, DOI 10.1016/j.niox.2006.01.006
  15. Jaffrey SR, 2001, NAT CELL BIOL, V3, P193, DOI 10.1038/35055104
  16. Jansen PL, 2007, FASEB J, V21, P1047, DOI 10.1096/fj.06-6755com
  17. Jones JA, 2008, J BIOMED MATER RES A, V84A, P158, DOI 10.1002/jbm.a.31220
  18. Kyriakides TR, 2009, MATRIX BIOL, V28, P65, DOI 10.1016/j.matbio.2009.01.001
  19. Lamkanfi M, 2009, IMMUNOL REV, V227, P95, DOI 10.1111/j.1600-065X.2008.00730.x
  20. Li W, 2004, MOL BIOL CELL, V15, P294
  21. Luttikhuizen DT, 2006, TISSUE ENG, V12, P1955, DOI 10.1089/ten.2006.12.1955
  22. McCarthy SM, 2008, BIOCHEMISTRY-US, V47, P5832, DOI 10.1021/bi702496v
  23. Moilanen E, 1997, AM J PATHOL, V150, P881
  24. Moretti AIS, 2008, FREE RADIC BIOL MED, V45, P135
  25. Moretti AIS, 2012, ACTA BIOMATER, V8, P108, DOI 10.1016/j.actbio.2011.08.004
  26. Moretti AIS, 2007, FREE RADIC BIOL MED, V43, P142
  27. Neumayer L, 2004, NEW ENGL J MED, V350, P1819, DOI 10.1056/NEJMoa040093
  28. Okamoto T, 2002, AM J RESP CELL MOL, V27, P463, DOI 10.1165/rcmb-2002-0039OC
  29. Page-McCaw A, 2007, NAT REV MOL CELL BIO, V8, P221, DOI 10.1038/nrm2125
  30. Saed GM, 2006, HUM REPROD, V21, P1605, DOI 10.1093/humrep/dei500
  31. Schreinemacher MHF, 2009, BRIT J SURG, V96, P305, DOI 10.1002/bjs.6446
  32. Sitia G, 2004, J CLIN INVEST, V113, P1158, DOI 10.1172/JCI200421087
  33. Vaz Márcia, 2009, Acta Cir Bras, V24, P19, DOI 10.1590/S0102-86502009000100005
  34. Visse R, 2003, CIRC RES, V92, P827, DOI 10.1161/01.RES.0000070112.80711.3D
  35. Weyhe D, 2007, WORLD J SURG, V31, P234, DOI 10.1007/s00268-006-0123-4
  36. Yamasaki K, 1998, J CLIN INVEST, V101, P967, DOI 10.1172/JCI2067